J. Kunz,
“Active Thermography as a Tool for the Estimation of Air-Water Transfer Velocities”, vol. Dissertation. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg, 2017.
E. Brachmann, Krull, A., Nowozin, S., Shotton, J., Michel, F., Gumhold, S., and Rother, C.,
“DSAC - Differentiable RANSAC for camera localization”, in
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 2492–2500.
M. Storath, Brandt, C., Hofmann, M., Knopp, T., Salamon, J., Weber, A., and Weinmann, A.,
“Edge preserving and noise reducing reconstruction for magnetic particle imaging”,
IEEE Transactions on Medical Imaging, vol. 36, no. 1, pp. 74 - 85, 2017.
Technical Report (1.43 MB) F. Michel, Kirillov, A., Brachmann, E., Krull, A., Gumhold, S., Savchynskyy, B., and Rother, C.,
“Global hypothesis generation for 6D object pose estimation”, in
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 115–124.
F. Michel, Kirillov, A., Brachmann, E., Krull, A., Gumhold, S., Savchynskyy, B., and Rother, C.,
“Global hypothesis generation for 6D object pose estimation”, in
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 115–124.
A. Kirillov, Levinkov, E., Andres, B., Savchynskyy, B., and Rother, C.,
“InstanceCut: From edges to instances with MultiCut”, in
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 7322–7331.
E. Levinkov, Uhrig, J., Tang, S., Omran, M., Insafutdinov, E., Kirillov, A., Rother, C., Brox, T., Schiele, B., and Andres, B.,
“Joint graph decomposition & node labeling: Problem, algorithms, applications”, in
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 1904–1912.
A. Kirillov, Schlesinger, D., Zheng, S., Savchynskyy, B., Torr, P. H. S., and Rother, C.,
“Joint training of generic CNN-CRF models with stochastic optimization”, in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10112 LNCS, pp. 221–236.
J. Kruse, Rother, C., and Schmidt, U.,
“Learning to Push the Limits of Efficient FFT-Based Image Deconvolution”, in
Proceedings of the IEEE International Conference on Computer Vision, 2017, vol. 2017-Octob, pp. 4596–4604.