B
M. Brocke,
“Statistical Image Sequence Processing for Temporal Change Detection”, in
Proceedings of the 24th DAGM Symposium on Pattern Recognition, 2002, vol. LNCS 2449, p. 215--223.
M. Brocke,
“Statistische Ereignisdetektion in Bildfolgen”. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg, 2002.
W. S. Broecker, Ledwell, J. R., Takahashi, T., Weiss, R., Merlivat, L., Memery, L., Jähne, B., and Münnich, K. O.,
“Isotopic versus micrometeorologic ocean CO$_2$ fluxes: A serious conflict”,
J. Geophys. Res., vol. 91, p. 10517--10528, 1986.
A. Bruhn, Weickert, J., Kohlberger, T., and Schnörr, C.,
“A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods”,
Int.~J.~Computer Vision, vol. 70, pp. 257-277, 2006.
Technical Report (447.65 KB) A. Bruhn, Jakob, T., Fischer, M., Kohlberger, T., Weickert, J., Brüning, U., and Schnörr, C.,
“Designing 3–D Nonlinear Diffusion Filters for High Performance Cluster Computing”, in
Pattern Recognition, Proc. 24th DAGM Symposium, Zürich, Switzerland, 2002, vol. 2449, pp. 290–297.
A. Bruhn, Jakob, T., Fischer, M., Weickert, J., Brüning, U., and Schnörr, C.,
“High performance cluster computing with 3-D nonlinear diffusion filters”,
Real-Time Imaging, vol. 10, pp. 41–51, 2004.
A. Bruhn, Weickert, J., Feddern, C., Kohlberger, T., and Schnörr, C.,
“Real-Time Optic Flow Computation with Variational Methods”, in
Proc. Computer Analysis of Images and Patterns (CAIP'03), 2003, vol. 2756, pp. 222-229.
A. Bruhn, Weickert, J., Feddern, C., Kohlberger, T., and Schnörr, C.,
“Variational optic flow computation in real-time”,
IEEE Trans. Image Proc., vol. 14, pp. 608–615, 2005.
A. Bruhn, Weickert, J., Feddern, C., Kohlberger, T., and Schnörr, C.,
“Variational Optic Flow Computation in Real-Time”, Dept. Math. and Comp. Science, Saarland University, Germany, 89, 2003.
A. Bruhn, Weickert, J., Kohlberger, T., and Schnörr, C.,
“A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods”,
Int. J. Computer Vision, vol. 70, pp. 257-277, 2006.
A. Bruhn, Weickert, J., Kohlberger, T., and Schnörr, C.,
“Discontinuity-Preserving Computation of Variational Optic Flow in Real-Time”, in
Scale-Space 2005, 2005, vol. 3459, pp. 279–290.
A. Bruhn, Weickert, J., and Schnörr, C.,
“Combining the Advantages of Local and Global Optic Flow Methods”, in
Pattern Recognition, Proc. 24th DAGM Symposium, Zürich, Switzerland, 2002, vol. 2449, pp. 454–462.
F. Brunswig,
“Strukturanalyse von Gletschereis und Baumringen mittels Digitaler Bildanalyse”, Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ.\ Heidelberg, 1992.
C
C. Cali, Baghabra, J., Boges, D. J., Holst, G. R., Kreshuk, A., Hamprecht, F. A., Srinivasan, M., Lehväslaiho, H., and Magistretti, P. J.,
“Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues”,
Journal of Comparative Neurology, vol. 524, pp. 23-38, 2015.
M. F. Carlsohn, Menze, B. H., Kelm, B. Michael, Hamprecht, F. A., Kercek, A., Leitner, R., and Polder, G.,
“Color image processing”, vol. 7(17),
R. Lukac and Plataniotis, K. N., Eds. CRC Press, 2006, pp. 393-419.
Y. Censor, Gibali, A., Lenzen, F., and Schnörr, C.,
“The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising”,
J. Comp. Math., vol. 34, pp. 608-623, 2016.
D. Cremers, Kohlberger, T., and Schnörr, C.,
“Nonlinear Shape Statistics via Kernel Spaces”, in
Mustererkennung 2001, Munich, Germany, 2001, vol. 2191, pp. 269–276.