Prof. Dr. Björn Ommer

Professor for Computer Vision

Heidelberg Collaboratory for Image Processing (HCI) &
Interdisciplinary Center for Scientific Computing (IWR),
Heidelberg University

Mathematikon (INF 205), Room 4.321
HCI / IWR, Uni Heidelberg
D-69120 Heidelberg, Germany
Tel.(office): +49 6221/54-14806
Tel.(secret.): +49 6221/54-14807
Fax: +49 6221/54-14814
Email: ommer (at) uni-heidelberg (dot) de

Open PhD and PostDoc Positions in Computer Vision
Bjorn


Brief C.V.


Björn Ommer is a full professor for Scientific Computing and leads the Computer Vision Group at Heidelberg University.

He has studied computer science together with physics as a minor subject at the University of Bonn, Germany. His diploma (~M.Sc.) thesis focused on visual grouping based on perceptual organization and compositionality.

After that he pursued his doctoral studies at ETH Zurich Switzerland in the Pattern Analysis and Machine Learning Group headed by Joachim M. Buhmann. He received his Ph.D. degree from ETH Zurich in 2007 for his dissertation "Learning the Compositional Nature of Objects for Visual Recognition" which was awarded the ETH Medal.

Thereafter, Björn held a post-doc position in the Computer Vision Group of Jitendra Malik at UC Berkeley.

He serves as an associate editor for the journal IEEE T-PAMI and previously for Pattern Recognition Letters. Björn is one of the directors of the HCI and of the IWR, principle investigator in the research training group 1653 ("Spatio/Temporal Graphical Models and Applications in Image Analysis"), and a member of the executive board and scientific committee of the Heidelberg Graduate School HGS MathComp. He has received the Outstanding Reviewer Award at CVPR'19, ICCV'15, CVPR'14, ICCV'13, CVPR'11, and CVPR'10 and has served as Area Chair for CVPR'20, and ECCV'18. Björn has organized the 2011 DAGM Workshop on Unsolved Problems in Pattern Recognition.



Research Areas


Computer vision, machine learning, cognitive science, biomedical image analysis, and the digital humanities; esp.: semantic scene understanding, deep learning & weak supervision, self-supervised metric and representation learning, object recognition in images and videos, behavior analysis, and their interdisciplinary applications.



Publications


Main publications' list »» Publications of the Ommer lab

News: 3 papers accepted for publication at CVPR'20 on:
  • Explainable AI
  • Reinforcement Learning for Deep Metric Learning
  • Unsupervised Behavior Analytics.

2020

Milbich, T, Roth, K and Ommer, B (2020). PADS: Policy-Adapted Sampling for Visual Similarity Learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1. https://arxiv.org/abs/2003.11113
Esser, P, Rombach, R and Ommer, B (2020). A Disentangling Invertible Interpretation Network for Explaining Latent Representations. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://compvis.github.io/iin/PDF iconArticle (13.07 MB)
Milbich, T, Ghori, O and Ommer, B (2020). Unsupervised Representation Learning by Discovering Reliable Image Relations. Pattern Recognition. 102. http://arxiv.org/abs/1911.07808
Roth, K, Milbich, T, Sinha, S, Gupta, P, Ommer, B and Cohen, J Paul (2020). Revisiting Training Strategies and Generalization Performance in Deep Metric Learning. https://arxiv.org/pdf/2002.08473.pdf
Milbich, T, Roth, K and Ommer, B (2020). Sharing Matters For Generalization In Deep Metric Learning. https://arxiv.org/abs/2004.05582
Milbich, T, Roth, K, Bharadhwaj, H, Sinha, S, Bengio, Y, Ommer, B and Cohen, J Paul (2020). Diva: Diverse Visual Feature Aggregation For Deep Metric Learning. https://arxiv.org/abs/2004.13458

2019

Kotovenko, D, Sanakoyeu, A, Lang, S and Ommer, B (2019). Content and Style Disentanglement for Artistic Style Transfer. Proceedings of the Intl. Conf. on Computer Vision (ICCV)
Brattoli, B, Roth, K and Ommer, B (2019). MIC: Mining Interclass Characteristics for Improved Metric Learning. Proceedings of the Intl. Conf. on Computer Vision (ICCV)
Lorenz, D, Bereska, L, Milbich, T and Ommer, B (2019). Unsupervised Part-Based Disentangling of Object Shape and Appearance. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Oral + Best paper finalist: top 45 / 5160 submissions)
Ufer, N, Lui, K To, Schwarz, K, Warkentin, P and Ommer, B (2019). Weakly Supervised Learning of Dense SemanticCorrespondences and Segmentation. German Conference on Pattern Recognition (GCPR)PDF iconarticle (6.1 MB)
Esser, P, Haux, J and Ommer, B (2019). Unsupervised Robust Disentangling of Latent Characteristics for Image Synthesis. Proceedings of the Intl. Conf. on Computer Vision (ICCV). https://compvis.github.io/robust-disentangling/
Kotovenko, D, Sanakoyeu, A, Lang, S, Ma, P and Ommer, B (2019). Using a Transformation Content Block For Image Style Transfer. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Sanakoyeu, A, Tschernezki, V, Büchler, U and Ommer, B (2019). Divide and Conquer the Embedding Space for Metric Learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://github.com/CompVis/metric-learning-divide-and-conquer

2018

Bell, P and Ommer, B (2018). Computer Vision und Kunstgeschichte — Dialog zweier Bildwissenschaften. Computing Art Reader: Einführung in die digitale Kunstgeschichte, P. Kuroczyński et al. (ed.)PDF icon413-17-83318-2-10-20181210.pdf (2.98 MB)
Sayed, N, Brattoli, B and Ommer, B (2018). Cross and Learn: Cross-Modal Self-Supervision. German Conference on Pattern Recognition (GCPR) (Oral). Stuttgart, Germany. https://arxiv.org/abs/1811.03879v1PDF iconArticle (891.47 KB)PDF iconOral slides (9.17 MB)
Sanakoyeu, A, Kotovenko, D, Lang, S and Ommer, B (2018). A Style-Aware Content Loss for Real-time HD Style Transfer. Proceedings of the European Conference on Computer Vision (ECCV) (Oral)
Büchler, U, Brattoli, B and Ommer, B (2018). Improving Spatiotemporal Self-Supervision by Deep Reinforcement Learning. Proceedings of the European Conference on Computer Vision (ECCV). (UB and BB contributed equally), Munich, GermanyPDF iconArticle (5.34 MB)PDF iconbuechler_eccv18_poster.pdf (1.65 MB)
Esser, P, Haux, J, Milbich, T and Ommer, B (2018). Towards Learning a Realistic Rendering of Human Behavior. European Conference on Computer Vision (ECCV - HBUGEN)
Ghori, O, Mackowiak, R, Bautista, M, Beuter, N, Drumond, L, Diego, F and Ommer, B (2018). Learning to Forecast Pedestrian Intention from Pose Dynamics. Intelligent Vehicles, IEEE, 2018
Blum, O, Brattoli, B and Ommer, B (2018). X-GAN: Improving Generative Adversarial Networks with ConveX Combinations. German Conference on Pattern Recognition (GCPR) (Oral). Stuttgart, GermanyPDF iconArticle (6.65 MB)PDF iconSupplementary material (7.96 MB)PDF iconOral slides (14.96 MB)
Esser, P, Sutter, E and Ommer, B (2018). A Variational U-Net for Conditional Appearance and Shape Generation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (short Oral). https://compvis.github.io/vunet/
Lang, S and Ommer, B (2018). Reflecting on How Artworks Are Processed and Analyzed by Computer Vision. European Conference on Computer Vision (ECCV - VISART). Springer
Lang, S and Ommer, B (2018). Attesting Similarity: Supporting the Organization and Study of Art Image Collections with Computer Vision. Digital Scholarship in the Humanities, Oxford University Press. 33 845-856
Sanakoyeu, A, Bautista, M and Ommer, B (2018). Deep Unsupervised Learning of Visual Similarities. Pattern Recognition. 78. https://authors.elsevier.com/a/1WXUt77nKSb25 PDF iconPDF (8.35 MB)
Lang, S and Ommer, B (2018). Reconstructing Histories: Analyzing Exhibition Photographs with Computational Methods. Arts, Computational Aesthetics. 7, 64PDF iconarts-07-00064.pdf (4.6 MB)
Wahl, A - S, Erlebach, E, Brattoli, B, Büchler, U, Kaiser, J, Ineichen, V B, Mosberger, A C, Schneeberger, S, Imobersteg, S, Wieckhorst, M, Stirn, M, Schroeter, A, Ommer, B and Schwab, M E (2018). Early reduced behavioral activity induced by large strokes affects the efficiency of enriched environment in rats. Sage Journals. Journal of Cerebral Blood Flow & Metabolism. http://journals.sagepub.com/doi/abs/10.1177/0271678X18777661PDF icon0271678x18777661.pdf (770.87 KB)

2017

Milbich, T, Bautista, M, Sutter, E and Ommer, B (2017). Unsupervised Video Understanding by Reconciliation of Posture Similarities. Proceedings of the IEEE International Conference on Computer Vision (ICCV). https://hciweb.iwr.uni-heidelberg.de/compvis/research/tmilbich_iccv17
Brattoli, B, Büchler, U, Wahl, A - S, Schwab, M E and Ommer, B (2017). LSTM Self-Supervision for Detailed Behavior Analysis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (BB and UB contributed equally)PDF iconArticle (8.75 MB)
Bautista, M, Sanakoyeu, A and Ommer, B (2017). Deep Unsupervised Similarity Learning using Partially Ordered Sets. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF icondeep_unsupervised_similarity_learning_cvpr_2017_paper.pdf (905.82 KB)
Ufer, N and Ommer, B (2017). Deep Semantic Feature Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF iconarticle (8.88 MB)
Sümer, Ö, Dencker, T and Ommer, B (2017). Self-supervised Learning of Pose Embeddings from Spatiotemporal Relations in Videos. Proceedings of the IEEE International Conference on Computer Vision (ICCV)PDF iconPaper (3.98 MB)PDF iconSupplementary Material (3.36 MB)
Bautista, M, Fuchs, P and Ommer, B (2017). Learning Where to Drive by Watching Others. Proceedings of the German Conference Pattern Recognition. Springer-Verlag, Basel. 1
Wahl, A - S, Büchler, U, Brändli, A, Brattoli, B, Musall, S, Kasper, H, Ineichen, B V, Helmchen, F, Ommer, B and Schwab, M E (2017). Optogenetically stimulating the intact corticospinal tract post-stroke restores motor control through regionalized functional circuit formation. Nature Communications. (ASW & UB contributed equally; BO and MES contributed equally). https://www.nature.com/articles/s41467-017-01090-6

2016

Bell, P and Ommer, B (2016). Digital Connoisseur? How Computer Vision Supports Art History. Connoisseurship nel XXI secolo. Approcci, Limiti, Prospettive, A. Aggujaro & S. Albl (ed.). Artemide, Rome
Bautista, M, Sanakoyeu, A, Sutter, E and Ommer, B (2016). CliqueCNN: Deep Unsupervised Exemplar Learning. Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS). MIT Press, Barcelona. https://arxiv.org/abs/1608.08792PDF iconArticle (5.79 MB)

2015

Antic, B and Ommer, B (2015). Per-Sample Kernel Adaptation for Visual Recognition and Grouping. Proceedings of the IEEE International Conference on Computer Vision. IEEEPDF iconTechnical Report (1.58 MB)
Rubio, J C and Ommer, B (2015). Regularizing Max-Margin Exemplars by Reconstruction and Generative Models. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 4213--4221PDF iconTechnical Report (2.8 MB)
Antic, B, Büchler, U, Wahl, A - S, Schwab, M E and Ommer, B (2015). Spatiotemporal Parsing of Motor Kinematics for Assessing Stroke Recovery. Medical Image Computing and Computer-Assisted Intervention. SpringerPDF iconArticle (2.24 MB)
Bell, P and Ommer, B (2015). Training Argus. Kunstchronik. Monatsschrift für Kunstwissenschaft, Museumswesen und Denkmalpflege. Zentralinstitut für Kunstgeschichte. 68 414--420
Yarlagadda, P and Ommer, B (2015). Beyond the Sum of Parts: Voting with Groups of Dependent Entities. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE. 37 1134--1147. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6926849

Pages



Selected Reports and Publications in Popular Science


"Das Objekt jenseits der Digitalisierung“, Deutsches Museum, 12/2018, The Future of the Digital Humanities beyond Digitization.

"Der Geist aus dem Computer“, Bild der Wissenschaft, 10/2018, covering part of our work in the digital humanities.

AI Learned How To Generate Human Appearance, Video on Two-Minute-Papers about our CVPR'18 paper on disentangling human behavior and appearance.

Painter AI Fools Art Historians, Video on Two-Minute-Papers about our ECCV'18 paper on artistic style transfer.

Improving Stroke Treatment Through Machine Learning, report on interdisciplinary project with neuroscientists from ETH Zurich.

Improving Motor Skills after Stroke, report on interdisciplinary project with neuroscientists from ETH Zurich.

TV documentary on our interdisciplinary work featured by RNF Television.

Björn Ommer, Bilder im Chaos, in: Universitas 68(810): 46-55, 2013.

Björn Ommer, From Chaos to Image - The Grammar of Patterns, in: Ruperto Carola Magazine, 03/2013.

Björn Ommer, Vom Pixel zum Bild - Wie Computer das Sehen lernen und die Forschungsarbeiten von Geistes- und Naturwissenschaftlern unterstützen können, in: Ruperto Carola Magazine, 02/2011.

Image Recognition: Teaching Computers to See, in: Young Talents -Innovative Ideas - Viable Alliances, 2011.

Automatische Bildanalyse - Blinde Computer sollen sehen lernen, in: Spiegel Online news report, 22.07.2011.

Dem Computer das Sehen beibringen, in: Rhein-Neckar-Zeitung newspaper article, 19.04.2010.



Teaching


Computer Vision Group: Teaching Website


Links


Computer Vision Group @ Uni Heidelberg

HCI @ Uni Heidelberg

University of Heidelberg

Computer Vision Group @ UC Berkeley

Institute for Machine Learning @ ETH Zurich