D
B. Jähne,
“Der Standard EMVA 1288 zur Charakterisierung von Kameras und Bildsensoren: von 2D- zu 3D-Kameras”, in
Photogrammetrie, Laserscanning, Optische 3D-Messtechnik, Beiträge der Oldenburger 3D-Tage 2013, 2013, p. 388--399.
E. J. Bock, Edson, J. B., Frew, N. M., Karachintsev, A., McGilles, W. R., Nelson, R. K., Hansen, K., Jähne, B., Hara, T., Uz, B. M., Jähne, B., Dieter, J., Klinke, J., and Haußecker, H.,
“Description of the science plan for the April 1995 CoOP experiment, `gas transfer in coastal waters', performed from the research vessel New Horizon”, in
Air-Water Gas Transfer, Selected Papers, 3rd Intern. Symp. on Air-Water Gas Transfer, 1995, p. 801--810.
H. Schilling, Diebold, M., Gutsche, M., and Jähne, B.,
“On the design of a fractal calibration pattern for improved camera calibration”,
tm - Technisches Messen, vol. 84, pp. 440–451, 2017.
A. Bruhn, Jakob, T., Fischer, M., Kohlberger, T., Weickert, J., Brüning, U., and Schnörr, C.,
“Designing 3–D Nonlinear Diffusion Filters for High Performance Cluster Computing”, in
Pattern Recognition, Proc. 24th DAGM Symposium, Zürich, Switzerland, 2002, vol. 2449, pp. 290–297.
J. Schlecht, Carque, B., and Ommer, B.,
“Detecting Gestures in Medieval Images”, in
Proceedings of the International Conference on Image Processing, 2011, p. 1309--1312.
Technical Report (1.61 MB) C. Decker and Hamprecht, F. A.,
“Detecting individual body parts improves mouse behavior classification”, in
Workshop on visual observation and analysis of Vertebrate And Insect Behavior (VAIB), 22nd International Conference on Pattern Recognition (ICPR). Proceedings, 2014.
Technical Report (1.48 MB) S. Ramos, Gehrig, S., Pinggera, P., Franke, U., and Rother, C.,
“Detecting unexpected obstacles for self-driving cars: Fusing deep learning and geometric modeling”, in
IEEE Intelligent Vehicles Symposium, Proceedings, 2017, pp. 1025–1032.
E. Eyjolfsdottir, Branson, S., Burgos-Artizzu, X. P., Hoopfer, E. D., Schor, J., Anderson, D. J., and Perona, P.,
“Detection of social actions in fruit flies”,
Lecture Notes in Computer Science, vol. 8690, pp. 772–787, 2014.
X. Lou, Kirchner, M., Renard, B. Y., Köthe, U., Graf, C., Lee, C., Steen, J. A. J., Steen, H., Mayer, M. P., and Hamprecht, F. A.,
“Deuteration Distribution Estimation with Improved Sequence Coverage for HX/MS Experiments”,
Bioinformatics, vol. 26(12), pp. 1535-1541, 2010.
Technical Report (518.01 KB) F. A. Hamprecht, Cohen, A. J., Tozer, D. J., and Handy, N. C.,
“Development and assessment of new exchange-correlation functionals”,
Journal of Chemical Physics, vol. 109, pp. 6264-6271, 1998.
J. A. J. Steen, Steen, H., Georgi, A., Parker, K. C., Springer, M., Kirchner, M., Hamprecht, F. A., and Kirschner, M. W.,
“Different Phosphorylation States of the Anaphase Promoting Complex in Response to Anti-Mitotic Drugs: A Quantitative Proteomic Analysis”,
Proceedings of the National Academy of Sciences, vol. 105, pp. 6069-6074, 2008.
Technical Report (173.02 KB) H. Spies, Haußecker, H., Jähne, B., and Barron, J. L.,
“Differential range flow estimation”, in
Proceedings of the 21th DAGM Symposium on Pattern Recognition, 1999, p. 309--316.
D. Cremers, Tischhäuser, F., Weickert, J., and Schnörr, C.,
“Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford–Shah functional”,
Int. J. Computer Vision, vol. 50, pp. 295–313, 2002.
D. Cremers, Schnörr, C., Weickert, J., and Schellewald, C.,
“Diffusion Snakes Using Statistical Shape Knowledge”, in
Proc. Algebraic Frames for the Perception-Action Cycle, Kiel, 2000, vol. 1888, pp. 164–174.
D. Cremers, Schnörr, C., and Weickert, J.,
“Diffusion–Snakes: Combining Statistical Shape Knowledge and Image Information in a Variational Framework”, in
IEEE First Workshop on Variational and Level Set Methods in Computer Vision, Vancouver, Canada, 2001, pp. 237–244.
A. Vijayan, Tofanelli, R., Strauss, S., Cerrone, L., Wolny, A., Strohmeier, J., Kreshuk, A., Hamprecht, F. A., Smith, R. S., and Schneitz, K.,
“A Digital 3D Reference Atlas Reveals Cellular Growth Patterns Shaping the Arabidopsis Ovule”,
eLife, 2021.
P. Bell and Ommer, B.,
“Digital Connoisseur? How Computer Vision Supports Art History”, in
Connoisseurship nel XXI secolo. Approcci, Limiti, Prospettive, A. Aggujaro & S. Albl (ed.), Rome: Artemide, 2016.