Publications

Export 223 results:
Author Title [ Type(Desc)] Year
Filters: Author is Christoph Schnörr  [Clear All Filters]
Conference Paper
A. Denitiu, Petra, S., Schnörr, C., and Schnörr, C., An Entropic Perturbation Approach to TV-Minimization for Limited-Data Tomography, in Discrete Geometry for Computer Imagery (DGCI) 2014, 2014, p. 262--274.PDF icon Technical Report (894.83 KB)
A. Neufeld, Berger, J., Becker, F., Lenzen, F., and Schnörr, C., Estimating Vehicle Ego-Motion and Piecewise Planar Scene Structure from Optical Flow in a Continuous Framework, in 37th German Conference on Pattern Recognition, 2015.
S. Schmidt, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Evaluation of a First-Order Primal-Dual Algorithm for MRF Energy Minimization, in EMMCVPR, 2011, vol. 6819, pp. 89-103.PDF icon Technical Report (684.13 KB)
S. Schmidt, Savchynskyy, B., Kappes, J. Hendrik, and Schnörr, C., Evaluation of a First-Order Primal-Dual Algorithm for MRF Energy Minimization, in EMMCVPR, 2011, vol. 6819, pp. 89-103.
S. Schmidt, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Evaluation of a First-Order Primal-Dual Algorithm for MRF Energy Minimization, in EMMCVPR 2011, 2011, vol. 6819, pp. 89-103.
J. Lellmann, Breitenreicher, D., and Schnörr, C., Fast and Exact Primal-Dual Iterations for Variational Problems in Computer Vision, in European Conference on Computer Vision (ECCV), 2010, vol. 6312, p. 494--505.PDF icon Technical Report (1.94 MB)
C. S. Garbe, Schnörr, C., and Jähne, B., Fluid flow estimation through integration of physical flow configurations, in Proceedings of the 29th DAGM Symposium on Pattern Recognition, 2007, p. 92--101.
B. Savchynskyy, Kappes, J. H., Swoboda, P., and Schnörr, C., Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation, in NIPS, 2013.PDF icon Technical Report (499.17 KB)
B. Savchynskyy, Kappes, J. H., Swoboda, P., and Schnörr, C., Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation, in NIPS. Proceedings, 2013, pp. 1950-1958.
B. Savchynskyy, Kappes, J. Hendrik, Swoboda, P., and Schnörr, C., Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation, in NIPS, 2013.
J. H. Kappes, Speth, M., Andres, B., Reinelt, G., and Schnörr, C., Globally Optimal Image Partitioning by Multicuts, in EMMCVPR, 2011, pp. 31-44.PDF icon Technical Report (7.3 MB)
J. H. Kappes, Speth, M., Andres, B., Reinelt, G., and Schnörr, C., Globally Optimal Image Partitioning by Multicuts, in EMMCVPR, 2011.PDF icon Technical Report (7.47 MB)
J. Hendrik Kappes, Speth, M., Andres, B., Reinelt, G., and Schnörr, C., Globally Optimal Image Partitioning by Multicuts, in EMMCVPR, 2011.
R. Karim, Bergtholdt, M., Kappes, J. H., and Schnörr, C., Greedy-Based Design of Sparse Two-Stage SVMs for Fast Classification, in Pattern Recognition -- 29th DAGM Symposium, 2007, vol. 4713, pp. 395-404.PDF icon Technical Report (491.56 KB)
B. Schmitzer and Schnörr, C., A Hierarchical Approach to Optimal Transport, in Scale Space and Variational Methods (SSVM 2013), 2013, pp. 452-464.
D. Breitenreicher and Schnörr, C., Intrinsic Second-Order Geometric Optimization for Robust Point Set Registration Without Correspondence, in Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2009), 2009, vol. 5681, pp. 274-287.
D. Breitenreicher and Schnörr, C., Intrinsic Second-Order Geometric Optimization for Robust Point Set Registration Without Correspondence, in Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2009), 2009, vol. 5681, pp. 274-287.PDF icon Technical Report (752.29 KB)
J. Berger and Schnörr, C., Joint Recursive Monocular Filtering of Camera Motion and Disparity Map, in 38th German Conference on Pattern Recognition, Hannover, 2016.PDF icon Technical Report (2.34 MB)
J. Berger and Schnörr, C., Joint Recursive Monocular Filtering of Camera Motion and Disparity Map, in 38th German Conference on Pattern Recognition, 2016.
M. Bergtholdt, Kappes, J. H., and Schnörr, C., Learning of Graphical Models and Efficient Inference for Object Class Recognition, in Proc. DAGM 2006, 2006, vol. 375-388, pp. 375-388.
D. Cremers, Schnörr, C., Weickert, J., and Schellewald, C., Learning Translation Invariant Shape Knowledge for Steering Diffusion-Snakes, in 3rd Workshop on Dynamic Perception, Berlin, Germany, 2000, vol. 9, pp. 117–122.
J. H. Kappes and Schnörr, C., MAP-Inference for Highly-Connected Graphs with DC-Programming, in Pattern Recognition -- 30th DAGM Symposium, 2008, vol. 5096, p. 1--10.PDF icon Technical Report (1.91 MB)
J. H. Kappes, Beier, T., and Schnörr, C., MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves, in Computer Vision - {ECCV} 2014 Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part {II}, 2014.PDF icon Technical Report (557.49 KB)
J. Hendrik Kappes, Beier, T., and Schnörr, C., MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves, in International Workshop on Graphical Models in Computer Vision, 2014.
M. Welk, Becker, F., Schnörr, C., and Weickert, J., Matrix-Valued Filters as Convex Programs, in Scale-Space 2005, 2005, vol. 3459, pp. 204–216.
D. Cremers and Schnörr, C., Motion Competition: Variational Integration of Motion Segmentation and Shape Regularization, in Pattern Recognition, Proc. 24th DAGM Symposium, Zürich, Switzerland, 2002, vol. 2449, pp. 472–480.
J. H. Kappes, Schmidt, S., and Schnörr, C., MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation, in European Conference on Computer Vision (ECCV), 2010, vol. 6313, p. 735--747.
J. H. Kappes, Schmidt, S., and Schnörr, C., MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation, in European Conference on Computer Vision (ECCV), 2010, vol. 6313, p. 735--747.PDF icon Technical Report (1.49 MB)
D. Cremers, Sochen, N., and Schnörr, C., Multiphase Dynamic Labeling for Variational Recognition-Driven Image Segmentation, in Computer Vision – ECCV 2004, 2004, vol. 3024, pp. 74-86.
D. Cremers, Kohlberger, T., and Schnörr, C., Nonlinear Shape Statistics in Mumford-Shah Based Segmentation, in Computer Vision -- ECCV 2002), 2002, vol. 2351, p. 93--108.PDF icon Technical Report (636.58 KB)
D. Cremers, Kohlberger, T., and Schnörr, C., Nonlinear Shape Statistics in Mumford-Shah Based Segmentation, in Computer Vision – ECCV 2002), 2002, vol. 2351, pp. 93–108.
D. Cremers, Kohlberger, T., and Schnörr, C., Nonlinear Shape Statistics via Kernel Spaces, in Mustererkennung 2001, Munich, Germany, 2001, vol. 2191, pp. 269–276.
D. Cremers, Kohlberger, T., and Schnörr, C., Nonlinear Shape Statistics via Kernel Spaces, in Mustererkennung 2001, 2001, vol. 2191, p. 269--276.PDF icon Technical Report (324.55 KB)
B. Schmitzer and Schnörr, C., Object Segmentation by Shape Matching with Wasserstein Modes, in Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2013), 2013, pp. 123-136.
P. Ruhnau, Stahl, A., and Schnörr, C., On-Line Variational Estimation of Dynamical Fluid Flows with Physics-Based Spatio-Temporal Regularization, in Proc.~DAGM 2006, 2006, vol. 375-388, pp. 375-388.PDF icon Technical Report (902.47 KB)

Pages