Error message

Deprecated function: Implicit conversion from float 0.2 to int loses precision in csl_number->ordinal() (line 1376 of sites/all/modules/biblio/modules/CiteProc/CSL.inc).

Publications

Export 1965 results:
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
F. Besse, Rother, C., Fitzgibbon, A., and Kautz, J., PMBP: PatchMatch Belief Propagation for correspondence field estimation, International Journal of Computer Vision, vol. 110, pp. 2–13, 2014.
F. Besse, Rother, C., Fitzgibbon, A., and Kautz, J., PMBP: PatchMatch Belief Propagation for correspondence field estimation, International Journal of Computer Vision, vol. 110, pp. 2–13, 2014.
T. Geiler, Polarisationsbildgebung in der industriellen Qualitätskontrolle. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg, 2008.
F. Michel, Krull, A., Brachmann, E., Yang, M. Ying, Gumhold, S., and Rother, C., Pose Estimation of Kinematic Chain Instances via Object Coordinate Regression, 2015, pp. 181.1–181.11.
A. Krull, Brachmann, E., Nowozin, S., Michel, F., Shotton, J., and Rother, C., PoseAgent: Budget-constrained 6D object pose estimation via reinforcement learning, in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 2566–2574.
C. Kondermann, Postprocessing and Restoration of Optical Flows. IWR, Fakultät für Mathematik und Informatik, Univ.\ Heidelberg, 2009.
C. Kondermann, Postprocessing and Restoration of Optical Flows. IWR, Fakultät für Mathematik und Informatik, Univ. Heidelberg, 2009.
C. Kondermann, Kondermann, D., and Garbe, C. S., Postprocessing of optical flows via surface measures and motion inpainting, in Pattern Recognition, 2008, vol. 5096, p. 355--364.
B. Jähne, Practical Handbook on Image Processing for Scientific and Technical Applications, 2nd ed. CRC Press, 2004.
B. Jähne, Practical Handbook on Image Processing for Scientific Applications. CRC-Press, Boca Raton, FL, USA, 1997.
F. A. Hamprecht, Jost, D., Rüttimann, M., Calamai, F., and Kowalski, J. J., Preliminary results on the prediction of countershock success with fibrillation power, Resuscitation, vol. 50, pp. 297-299, 2001.
M. Detert, Jirka, G. H., Jehle, M., Klar, M., Jähne, B., Köhler, H. - J., and Wenka, T., Pressure fluctuations within subsurface gravel bed caused by turbulent open-channel flow, in Proc. of River Flow 2004, 2004, pp. 695-701.
S. Haller, Prakash, M., Hutschenreiter, L., Pietzsch, T., Rother, C., Jug, F., Swoboda, P., and Savchynskyy, B., A Primal-Dual Solver for Large-Scale Tracking-by-Assignment, AISTATS 2020. 2020.PDF icon PDF (1.04 MB)
M. Jäger and Hamprecht, F. A., Principal Component Imagery for the Quality Monitoring of Dynamic Laser Welding Processes, IEEE Transactions on Industrial Electronics, vol. 56:4, pp. 1307-1313, 2008.
B. Jähne, Scharr, H., Körkel, S., Jähne, B., Haußecker, H., and Geißler, P., Principles of Filter Design, Handbook of Computer Vision and Applications, vol. 2. Academic Press, p. 125--151, 1999.
B. Jähne, Prinzipien und Verfahren zur Aufnahme spektraler Bilddaten - Vereinfachte Bildanalyse, QZ, vol. 53, p. 45--48, 2008.
S. Weber, Schüle, T., and Schnörr, C., Prior Learning and Convex-Concave Regularization of Binary Tomography, Electr. Notes in Discr. Math., vol. 20, pp. 313-327, 2005.
M. Geese, Ruhnau, P., and Jähne, B., PRNU and DSNU Maximum Likelihood Estimation Using Sensor Statistics, tm --- Technisches Messen, vol. 80, p. 321--328, 2013.
T. Hehn, A probabilistic approach to learn complex differentiable split functions in decision trees using gradient ascent, Heidelberg University, 2017.
J. H. Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Probabilistic Correlation Clustering and Image Partitioning Using Perturbed Multicuts, in Proc.~SSVM, 2015.PDF icon Technical Report (1.1 MB)
J. Hendrik Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Probabilistic correlation clustering and image partitioning using perturbed Multicuts, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 9087, pp. 231–242.
J. Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Probabilistic Correlation Clustering and Image Partitioning Using Perturbed Multicuts, in Proc. SSVM, 2015.
V. Kolmogorov, Criminisi, A., Blake, A., Cross, G., and Rother, C., Probabilistic fusion of stereo with color and contrast for bilayer segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, pp. 1480–1492, 2006.
F. Rathke, Probabilistic Graphical Models for Medical Image Segmentation. University Heidelberg, 2015.
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Probabilistic Image Segmentation with Closedness Constraints, in Proceedings of ICCV, 2011.PDF icon Technical Report (2.95 MB)
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Probabilistic Image Segmentation with Closedness Constraints, in Proceedings of ICCV, 2011.
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Probabilistic Image Segmentation with Closedness Constraints, in ICCV, Proceedings, 2011, pp. 2611 - 2618.PDF icon Technical Report (8.18 MB)
F. Rathke, Schmidt, S., and Schnörr, C., Probabilistic Intra-Retinal Layer Segmentation in 3-D OCT Images Using Global Shape Regularization, Med. Image Anal., vol. 18, pp. 781–794, 2014.
F. Rathke, Schmidt, S., and Schnörr, C., Probabilistic Intra-Retinal Layer Segmentation in 3-D OCT Images Using Global Shape Regularization, Medical Image Analysis, vol. 18, pp. 781-794, 2014.PDF icon Technical Report (4.07 MB)
F. Rathke, Schmidt, S., and Schnörr, C., Probabilistic Intra-Retinal Layer Segmentation in 3-D OCT Images Using Global Shape Regularization, Medical Image Analysis, vol. 18, pp. 781-794, 2014.
C. Schellewald and Schnörr, C., Probabilistic Subgraph Matching Based on Convex Relaxation, in Proc. Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR'05), 2005, vol. 3757, pp. 171-186.
F. E Sanmartin, Damrich, S., and Hamprecht, F. A., Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning, in Advances in Neural Information Processing Systems, 2019.
R. Chellappa and Machinery., Afor Comput, Proceedings - 7th Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2010, ACM International Conference Proceeding Series. ACM, 2010.
S. Trittler, Processing of Interferometric Data. University of Heidelberg, 2007.
L. Görlitz, Menze, B. H., Kelm, B. Michael, and Hamprecht, F. A., Processing Spectral Data, Surface and Interface Analysis, vol. 41, pp. 636-644, 2009.PDF icon Technical Report (4.17 MB)

Pages