P
F. Besse, Rother, C., Fitzgibbon, A., and Kautz, J.,
“PMBP: PatchMatch Belief Propagation for correspondence field estimation”,
International Journal of Computer Vision, vol. 110, pp. 2–13, 2014.
F. Besse, Rother, C., Fitzgibbon, A., and Kautz, J.,
“PMBP: PatchMatch Belief Propagation for correspondence field estimation”,
International Journal of Computer Vision, vol. 110, pp. 2–13, 2014.
F. Michel, Krull, A., Brachmann, E., Yang, M. Ying, Gumhold, S., and Rother, C.,
“Pose Estimation of Kinematic Chain Instances via Object Coordinate Regression”, 2015, pp. 181.1–181.11.
A. Krull, Brachmann, E., Nowozin, S., Michel, F., Shotton, J., and Rother, C.,
“PoseAgent: Budget-constrained 6D object pose estimation via reinforcement learning”, in
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 2566–2574.
C. Kondermann,
“Postprocessing and Restoration of Optical Flows”. IWR, Fakultät für Mathematik und Informatik, Univ.\ Heidelberg, 2009.
C. Kondermann,
“Postprocessing and Restoration of Optical Flows”. IWR, Fakultät für Mathematik und Informatik, Univ. Heidelberg, 2009.
F. A. Hamprecht, Jost, D., Rüttimann, M., Calamai, F., and Kowalski, J. J.,
“Preliminary results on the prediction of countershock success with fibrillation power”,
Resuscitation, vol. 50, pp. 297-299, 2001.
M. Detert, Jirka, G. H., Jehle, M., Klar, M., Jähne, B., Köhler, H. - J., and Wenka, T.,
“Pressure fluctuations within subsurface gravel bed caused by turbulent open-channel flow”, in
Proc. of River Flow 2004, 2004, pp. 695-701.
S. Haller, Prakash, M., Hutschenreiter, L., Pietzsch, T., Rother, C., Jug, F., Swoboda, P., and Savchynskyy, B.,
“A Primal-Dual Solver for Large-Scale Tracking-by-Assignment”,
AISTATS 2020. 2020.
PDF (1.04 MB) B. Jähne, Scharr, H., Körkel, S., Jähne, B., Haußecker, H., and Geißler, P.,
“Principles of Filter Design”,
Handbook of Computer Vision and Applications, vol. 2. Academic Press, p. 125--151, 1999.
J. H. Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C.,
“Probabilistic Correlation Clustering and Image Partitioning Using Perturbed Multicuts”, in
Proc.~SSVM, 2015.
Technical Report (1.1 MB) J. Hendrik Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C.,
“Probabilistic correlation clustering and image partitioning using perturbed Multicuts”, in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 9087, pp. 231–242.
J. Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C.,
“Probabilistic Correlation Clustering and Image Partitioning Using Perturbed Multicuts”, in
Proc. SSVM, 2015.
V. Kolmogorov, Criminisi, A., Blake, A., Cross, G., and Rother, C.,
“Probabilistic fusion of stereo with color and contrast for bilayer segmentation”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, pp. 1480–1492, 2006.
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A.,
“Probabilistic Image Segmentation with Closedness Constraints”, in
Proceedings of ICCV, 2011.
Technical Report (2.95 MB) B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A.,
“Probabilistic Image Segmentation with Closedness Constraints”, in
Proceedings of ICCV, 2011.
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A.,
“Probabilistic Image Segmentation with Closedness Constraints”, in
ICCV, Proceedings, 2011, pp. 2611 - 2618.
Technical Report (8.18 MB) C. Schellewald and Schnörr, C.,
“Probabilistic Subgraph Matching Based on Convex Relaxation”, in
Proc. Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR'05), 2005, vol. 3757, pp. 171-186.
L. Görlitz, Menze, B. H., Kelm, B. Michael, and Hamprecht, F. A.,
“Processing Spectral Data”,
Surface and Interface Analysis, vol. 41, pp. 636-644, 2009.
Technical Report (4.17 MB)