Publications

Export 1963 results:
[ Author(Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
D. Cremers and Schnörr, C., Motion Competition: Variational Integration of Motion Segmentation and Shape Regularization, in Pattern Recognition, Proc. 24th DAGM Symposium, Zürich, Switzerland, 2002, vol. 2449, pp. 472–480.
D. Cremers and Schnörr, C., Statistical Shape Knowledge in Variational Motion Segmentation, Image and Vision Comp., vol. 21, pp. 77-86, 2003.
D. Cremers, Schnörr, C., and Weickert, J., Diffusion–Snakes: Combining Statistical Shape Knowledge and Image Information in a Variational Framework, in IEEE First Workshop on Variational and Level Set Methods in Computer Vision, Vancouver, Canada, 2001, pp. 237–244.
D. Cremers, Schnörr, C., Weickert, J., and Schellewald, C., Learning Translation Invariant Shape Knowledge for Steering Diffusion-Snakes, in 3rd Workshop on Dynamic Perception, Berlin, Germany, 2000, vol. 9, pp. 117–122.
D. Cremers, Schnörr, C., Weickert, J., and Schellewald, C., Diffusion Snakes Using Statistical Shape Knowledge, in Proc. Algebraic Frames for the Perception-Action Cycle, Kiel, 2000, vol. 1888, pp. 164–174.
D. Cremers, Sochen, N., and Schnörr, C., Towards Recognition-Based Variational Segmentation Using Shape Priors and Dynamic Labeling, in Scale Space Methods in Computer Vision, 2003, vol. 2695, pp. 388–400.
D. Cremers, Sochen, N., and Schnörr, C., Multiphase Dynamic Labeling for Variational Recognition-Driven Image Segmentation, in Computer Vision – ECCV 2004, 2004, vol. 3024, pp. 74-86.
D. Cremers, Sochen, N., and Schnörr, C., Multiphase Dynamic Labeling for Variational Recognition-Driven Image Segmentation, ijcv, vol. 66, pp. 67-81, 2006.
D. Cremers, Tischhäuser, F., Weickert, J., and Schnörr, C., Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford–Shah functional, Int. J. Computer Vision, vol. 50, pp. 295–313, 2002.
R. Chellappa and Machinery., Afor Comput, Proceedings - 7th Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2010, ACM International Conference Proceeding Series. ACM, 2010.
L. Cerrone, Deep End-to-End Learning of a Diffusion Process for Seeded Image Segmentation, Heidelberg University, 2018.
L. Cerrone, Zeilmann, A., and Hamprecht, F. A., End-to-End Learned Random Walker for Seeded Image Segmentation, CVPR. Proceedings. pp. 12559-12568, 2019.
Y. Censor, Petra, S., and Schnörr, C., Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case, J. Appl. Numer. Optimization (in press; arXiv:1911.05498), vol. 2, pp. 15-62, 2020.
Y. Censor, Petra, S., and Schnörr, C., Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case, preprint: arXiv, 2019.
Y. Censor, Gibali, A., Lenzen, F., and Schnörr, C., The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising, J. Comp. Math., vol. 34, pp. 608-623, 2016.
A. Cavallo, Four dimensional particle tracking in biological dynamic processes. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg, 2002.
H. Carstens, Ein Skalenraumverfahren zur Orts/Wellenzahl-Raum-Analyse winderzeugter Wasserwellen, IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg, 1998.
M. F. Carlsohn, Menze, B. H., Kelm, B. Michael, Hamprecht, F. A., Kercek, A., Leitner, R., and Polder, G., Color image processing, vol. 7(17), R. Lukac and Plataniotis, K. N., Eds. CRC Press, 2006, pp. 393-419.
B. Jähne and Jähne, B., Evaluation of a two-scale model using extensive radar backscatter and wave measurements in a large wind-wave flume, in Proceedings IGARSS '91, 1991, vol. 2, p. 885--888.
C. Cali, Baghabra, J., Boges, D. J., Holst, G. R., Kreshuk, A., Hamprecht, F. A., Srinivasan, M., Lehväslaiho, H., and Magistretti, P. J., Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues, Journal of Comparative Neurology, vol. 524, pp. 23-38, 2015.
B
M. Bühl and Hamprecht, F. A., Theoretical Investigation of NMR Chemical Shifts and Reactivities of Oxovanadium (V) Compounds, Journal of Computational Chemistry, vol. 19, pp. 113-122, 1998.
U. Büchler, Brattoli, B., and Ommer, B., Improving Spatiotemporal Self-Supervision by Deep Reinforcement Learning, in Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 2018.PDF icon Article (5.34 MB)PDF icon buechler_eccv18_poster.pdf (1.65 MB)
F. Brunswig, Strukturanalyse von Gletschereis und Baumringen mittels Digitaler Bildanalyse, Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ.\ Heidelberg, 1992.
A. Bruhn, Weickert, J., Kohlberger, T., and Schnörr, C., A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods, Int.~J.~Computer Vision, vol. 70, pp. 257-277, 2006.PDF icon Technical Report (447.65 KB)
A. Bruhn, Jakob, T., Fischer, M., Kohlberger, T., Weickert, J., Brüning, U., and Schnörr, C., Designing 3–D Nonlinear Diffusion Filters for High Performance Cluster Computing, in Pattern Recognition, Proc. 24th DAGM Symposium, Zürich, Switzerland, 2002, vol. 2449, pp. 290–297.
A. Bruhn, Jakob, T., Fischer, M., Weickert, J., Brüning, U., and Schnörr, C., High performance cluster computing with 3-D nonlinear diffusion filters, Real-Time Imaging, vol. 10, pp. 41–51, 2004.
A. Bruhn, Weickert, J., Feddern, C., Kohlberger, T., and Schnörr, C., Real-Time Optic Flow Computation with Variational Methods, in Proc. Computer Analysis of Images and Patterns (CAIP'03), 2003, vol. 2756, pp. 222-229.
A. Bruhn, Weickert, J., Feddern, C., Kohlberger, T., and Schnörr, C., Variational optic flow computation in real-time, IEEE Trans. Image Proc., vol. 14, pp. 608–615, 2005.
A. Bruhn, Weickert, J., Feddern, C., Kohlberger, T., and Schnörr, C., Variational Optic Flow Computation in Real-Time, Dept. Math. and Comp. Science, Saarland University, Germany, 89, 2003.
A. Bruhn, Weickert, J., Kohlberger, T., and Schnörr, C., A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods, Int. J. Computer Vision, vol. 70, pp. 257-277, 2006.
A. Bruhn, Weickert, J., Kohlberger, T., and Schnörr, C., Discontinuity-Preserving Computation of Variational Optic Flow in Real-Time, in Scale-Space 2005, 2005, vol. 3459, pp. 279–290.
A. Bruhn, Weickert, J., and Schnörr, C., Combining the Advantages of Local and Global Optic Flow Methods, in Pattern Recognition, Proc. 24th DAGM Symposium, Zürich, Switzerland, 2002, vol. 2449, pp. 454–462.
A. Bruhn, Weickert, J., and Schnörr, C., Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods, vol. 61, pp. 211-231, 2005.
M. Brosowsky, Cluster Resolving for Animal Tracking: Multi Hypotheses Tracking with Part Based Model for Object Hypotheses Generation and Pose Estimation, University of Heidelberg, 2017.
W. S. Broecker, Ledwell, J. R., Takahashi, T., Weiss, R., Merlivat, L., Memery, L., Jähne, B., and Münnich, K. O., Isotopic versus micrometeorologic ocean CO$_2$ fluxes: A serious conflict, J. Geophys. Res., vol. 91, p. 10517--10528, 1986.

Pages