Publications

Export 63 results:
[ Author(Asc)] Title Type Year
Filters: First Letter Of Last Name is A  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
J. M. Álvarez, Gevers, T., Diego, F., and López, A. M., Road Geometry Classification by Adaptive Shape Models, IEEE Transactions on Intelligent Transportation Systems (ITS), vol. 99, pp. 1-10, 2012.
M. Atif, Optimal Depth Estimation and Extended Depth of Field from Single Images by Computational Imaging using Chromatic Aberrations. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg, 2013.
M. Atif, Optimal Depth Estimation and Extended Depth of Field from Single Images by Computational Imaging using Chromatic Aberrations, vol. Dissertation. IWR, Univ. Heidelberg, 2013.
M. Atif and Jähne, B., Optimal Depth Estimation from a Single Image by Computational Imaging using Chromatic Aberrations, in Forum Bildverarbeitung, 2012, p. 23--34.
M. Atif and Jähne, B., Optimal Depth Estimation from a Single Image by Computational Imaging Using Chromatic Aberrations, tm --- Technisches Messen, vol. 80, p. 343--348, 2013.
M. Atif, Zimmermann, K., and Jähne, B., A space-variant (3D) image simulation tool for computational cameras, in International Conference on Computational Photography (ICCP) 2010, 2010.
F. Aström, Petra, S., Schmitzer, B., and Schnörr, C., Image Labeling by Assignment, J. Math. Imag. Vision, vol. 58, pp. 211–238, 2017.
F. Aström and Schnörr, C., A Geometric Approach for Color Image Regularization, Comp. Vision Image Understanding, vol. 165, pp. 43–59, 2017.
F. Aström, Hühnerbein, R., Savarino, F., Recknagel, J., and Schnörr, C., MAP Image Labeling Using Wasserstein Messages and Geometric Assignment, in Proc. SSVM, 2017, vol. 10302.
F. Aström, Petra, S., Schmitzer, B., and Schnörr, C., A Geometric Approach to Image Labeling, in Proc. ECCV, 2016.
F. Aström and Schnörr, C., Double-Opponent Vectorial Total Variation, in Proc. ECCV, 2016.
F. Aström and Schnörr, C., A Geometric Approach to Color Image Regularization. 2016.
F. Aström, Petra, S., Schmitzer, B., and Schnörr, C., The Assignment Manifold: A Smooth Model for Image Labeling, in Proc. 2nd Int. Workshop on Differential Geometry in Computer Vision and Machine Learning (DIFF-CVML'16; oral presentation; Grenander best paper award), 2016.
F. Aström, Petra, S., Schmitzer, B., and Schnörr, C., Image Labeling by Assignment. 2016.
M. Arnold, Bell, P., and Ommer, B., Automated Learning of Self-Similarity and Informative Structures in Architecture, in Scientific Computing & Cultural Heritage, 2013.
N. Arnold, Visualisierung des Gasaustauschs an der windbewegten Wasseroberfläche mittels vertikaler Konzentrationsfelder von gelöstem Sauerstoff quer zur Windrichtung, Institut für Umweltphysik, Universität Heidelberg, Germany, 2015.
A. Arnab, Zheng, S., Jayasumana, S., Romera-paredes, B., Kirillov, A., Savchynskyy, B., Rother, C., Kahl, F., and Torr, P., Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation, Cvpr, vol. XX, pp. 1–15, 2018.
H. Arlt, Sui, X., Folger, B., Adams, C., Chen, X., Remme, R., Hamprecht, F. A., DiMaio, F., Liao, M., Goodman, J. M., Farese, R. V., and Walther, T. C., Seipin forms a flexible cage at lipid droplet formation sites. bioRxiv, 2021.
L. Ardizzone, Mackowiak, R., Rother, C., and Köthe, U., Exact Information Bottleneck with Invertible Neural Networks: Getting the Best of Discriminative and Generative Modeling, 2020.PDF icon PDF (2.87 MB)
L. Ardizzone, Lüth, C., Kruse, J., Rother, C., and Köthe, U., Guided Image Generation with Conditional Invertible Neural Networks, 2019.
L. Ardizzone, Lüth, C., Kruse, J., Rother, C., and Köthe, U., Guided Image Generation with Conditional Invertible Neural Networks, 2019.
B. Antic, Büchler, U., Wahl, A. - S., Schwab, M. E., and Ommer, B., Spatiotemporal Parsing of Motor Kinematics for Assessing Stroke Recovery, in Medical Image Computing and Computer-Assisted Intervention, 2015.PDF icon Article (2.24 MB)
B. Antic and Ommer, B., Per-Sample Kernel Adaptation for Visual Recognition and Grouping, in Proceedings of the IEEE International Conference on Computer Vision, 2015.PDF icon Technical Report (1.58 MB)
B. Antic and Ommer, B., Spatio-temporal Video Parsing for Abnormality Detection, arXiv, vol. abs/1502.06235, 2015.PDF icon Technical Report (4.61 MB)
B. Antic and Ommer, B., Learning Latent Constituents for Recognition of Group Activities in Video, in Proceedings of the European Conference on Computer Vision (ECCV) (Oral), 2014, p. 33--47.PDF icon Technical Report (4.54 MB)
B. Antic, Milbich, T., and Ommer, B., Less is More: Video Trimming for Action Recognition, in Proceedings of the IEEE International Conference on Computer Vision, Workshop on Understanding Human Activities: Context and Interaction, 2013, p. 515--521.PDF icon Technical Report (984.89 KB)
B. Antic and Ommer, B., Robust Multiple-Instance Learning with Superbags, in Proceedings of the Aian Conference on Computer Vision (ACCV) (Oral), 2012, p. 242--255.PDF icon Technical Report (319.58 KB)
B. Antic and Ommer, B., Video Parsing for Abnormality Detection, in Proceedings of the IEEE International Conference on Computer Vision, 2011, p. 2415--2422.PDF icon Technical Report (990.21 KB)
A. M. Andrew, Multiple View Geometry in Computer Vision, Kybernetes, vol. 30. pp. 1333–1341, 2001.
B. Andres, Köthe, U., Helmstaedter, M., Denk, W., and Hamprecht, F. A., Segmentation of SBFSEM Volume Data of Neural Tissue by Hierarchical Classification, in Pattern Recognition. 30th DAGM Symposium Munich, Germany, June 10-13, 2008. Proceedings, 2008, vol. 5096, pp. 142-152.PDF icon Technical Report (1.21 MB)
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., The Lazy Flipper: Efficient Depth-Limited Exhaustive Search in Discrete Graphical Models, in Computer Vision - {ECCV} 2012 - 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part {VII}, 2012.PDF icon Technical Report (446.28 KB)
B. Andres, Köthe, U., Bonea, A., Nadler, B., and Hamprecht, F. A., Quantitative Assessment of Image Segmentation Quality by Random Walk Relaxation Times, in Pattern Recognition. 31st DAGM Symposium, Jena, Germany, September 9-11, 2009. Proceedings, 2009, vol. 5748, pp. 502-511.PDF icon Technical Report (3.08 MB)
B. Andres, Hamprecht, F. A., and Garbe, C. S., Selection of Local Optical Flow Models by Means of Residual Analysis, in Pattern Recognition, 2007, vol. 4713, pp. 72-81.PDF icon Technical Report (229.64 KB)
B. Andres, Model Selection in Optical Flow-Based Motion Estimation by Means of Residual Analysis, University of Heidelberg, 2007.
B. Andres, Automated Segmentation of Large 3D Images of Nervous Systems Using a Higher-order Graphical Model. University of Heidelberg, 2011.

Pages