Publications

Export 1965 results:
Author Title Type [ Year(Asc)]
Filters: Filter is   [Clear All Filters]
2018
Rathke, F and Schnörr, C (2018). Fast Multivariate Log-Concave Density Estimation. preprint: ArXiv. https://arxiv.org/pdf/1805.07272.pdfPDF icon Technical Report (3.54 MB)
Rathke, F and Schnörr, C (2018). Fast Multivariate Log-Concave Density Estimation. preprint: arXiv. https://arxiv.org/pdf/1805.07272.pdf
Fortun, D, Storath, M, Rickert, D, Weinmann, A and Unser, M (2018). Fast Piecewise-Affine Motion Estimation Without Segmentation. IEEE Transactions on Image Processing. 27 5612 - 5624
Zern, A, Rohr, K and Schnörr, C (2018). Geometric Image Labeling with Global Convex Labeling Constraints. EMMCVPR. 10746 533–547
Abu Alhaija, H, Mustikovela, S K, Geiger, A and Rother, C (2018). Geometric Image Synthesis. ACCV. Proceedings, in pressPDF icon Technical Report (1.83 MB)
Zeilmann, A, Savarino, F, Petra, S and Schnörr, C (2018). Geometric Numerical Integration of the Assignment Flow. preprint: arXiv. https://arxiv.org/abs/1810.06970
Hühnerbein, R, Savarino, F, Aström, F and Schnörr, C (2018). Image Labeling Based on Graphical Models Using Wasserstein Messages and Geometric Assignment. SIAM Journal on Imaging Sciences. 11 1317-1362PDF icon Technical Report (2.62 MB)
Hühnerbein, R, Savarino, F, Aström, F and Schnörr, C (2018). Image Labeling Based on Graphical Models Using Wasserstein Messages and Geometric Assignment. SIAM J. Imaging Science. 11 1317–1362. https://epubs.siam.org/doi/abs/10.1137/17M1150669
Büchler, U, Brattoli, B and Ommer, B (2018). Improving Spatiotemporal Self-Supervision by Deep Reinforcement Learning. Proceedings of the European Conference on Computer Vision (ECCV). (UB and BB contributed equally), Munich, GermanyPDF icon Article (5.34 MB)PDF icon buechler_eccv18_poster.pdf (1.65 MB)
Kunz, J and Jähne, B (2018). Investigating small scale air-sea exchange processes via thermography. Front. Mech. Eng. 26
Hosseini Jafari, O, Mustikovela, S K, Pertsch, K, Brachmann, E and Rother, C (2018). iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects. ACCV. Proceedings, in pressPDF icon Technical Report (3.28 MB)
Schimmel, F (2018). Learnability Of Approximated Graph Cut Segmentation. Heidelberg University
Brachmann, E and Rother, C (2018). Learning Less is More - 6D Camera Localization via 3D Surface Regression. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 4654–4662. http://arxiv.org/abs/1711.10228
Weiler, M, Hamprecht, F A and Storath, M (2018). Learning Steerable Filters for Rotation Equivariant CNNs. CVPR. Proceedings. 849-858PDF icon Technical Report (1.35 MB)
Ghori, O, Mackowiak, R, Bautista, M, Beuter, N, Drumond, L, Diego, F and Ommer, B (2018). Learning to Forecast Pedestrian Intention from Pose Dynamics. Intelligent Vehicles, IEEE, 2018
Erb, W, Weinmann, A, Ahlborg, M, Brandt, C, Bringout, G, Buzug, T M, Frikel, J, Kaethner, C, Knopp, T, März, T, Möddel, M, Storath, M and Weber, A (2018). Mathematical Analysis of the 1D Model and Reconstruction Schemes for Magnetic Particle Imaging. Inverse Problems. 34
Shekhovtsov, A, Swoboda, P and Savchynskyy, B (2018). Maximum Persistency via Iterative Relaxed Inference in Graphical Models. IEEE Transactions on Pattern Analysis and Machine Intelligence. 40 1668–1682. http://www.icg.tugraz.at/
Kiechle, M, Storath, M, Weinmann, A and Kleinsteuber, M (2018). Model-based learning of local image features for unsupervised texture segmentation. IEEE Transactions on Image Processing. 27 1994-2007
Tourani, S, Shekhovtsov, A, Rother, C and Savchynskyy, B (2018). MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical Models. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11208 LNCS 264–281
Beier, T (2018). Multicut Algorithms for Neurite Segmentation. Heidelberg University
Wolf, S, Pape, C, Bailoni, A, Rahaman, N, Kreshuk, A, Köthe, U and Hamprecht, F A (2018). The Mutex Watershed: Efficient, Parameter-Free Image Partitioning. ECCV. Proceedings. Springer. 571-587
Wolf, S, Pape, C, Bailoni, A, Rahaman, N, Kreshuk, A, Köthe, U and Hamprecht, F A (2018). The Mutex Watershed: Efficient, Parameter-Free Image Partitioning. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11208 LNCS 571–587. http://arxiv.org/abs/1904.12654
Lang, S and Ommer, B (2018). Reconstructing Histories: Analyzing Exhibition Photographs with Computational Methods. Arts, Computational Aesthetics. 7, 64PDF icon arts-07-00064.pdf (4.6 MB)
Lang, S and Ommer, B (2018). Reflecting on How Artworks Are Processed and Analyzed by Computer Vision. European Conference on Computer Vision (ECCV - VISART). Springer
Vianello, A, Ackermann, J, Diebold, M and Jähne, B (2018). Robust Hough transform based 3D reconstruction from circular light fields. Conference on Computer Vision and Pattern Recognition (CVPR)
Kostrykin, L, Schnörr, C and Rohr, K (2018). Segmentation of Cell Nuclei Using Intensity-Based Model Fitting and Sequential Convex Programming. Proc. ISBI
Kawetzki, D (2018). Semantic Segmentation Of Urban Scenes Using Deep Learning. Heidelberg University
Rahaman, N, Arpit, D, Baratin, A, Draxler, F, Lin, M, Hamprecht, F A, Bengio, Y and Courville, A (2018). On the spectral bias of deep neural networks. arXiv preprint arXiv:1806.08734
Sanakoyeu, A, Kotovenko, D, Lang, S and Ommer, B (2018). A Style-Aware Content Loss for Real-time HD Style Transfer. Proceedings of the European Conference on Computer Vision (ECCV) (Oral)
(2018). A Supplementary Material Cereals-Cost-Effective Region-Based Active Learning For Semantic Segmentation
Bredies, K, Holler, M, Storath, M and Weinmann, A (2018). Total Generalized Variation for Manifold-valued Data. SIAM Journal on Imaging Sciences. 11 1785 - 1848
Esser, P, Haux, J, Milbich, T and Ommer, B (2018). Towards Learning a Realistic Rendering of Human Behavior. European Conference on Computer Vision (ECCV - HBUGEN)
Schilling, H, Diebold, M, Rother, C and Jähne, B (2018). Trust your Model: Light Field Depth Estimation with Inline Occlusion Handling. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 4530–4538
Schilling, H, Diebold, M, Rother, C and Jähne, B (2018). Trust your Model: Light Field Depth Estimation with inline Occlusion Handling. CVPR. ProceedingsPDF icon Technical Report (5.46 MB)
Zern, A, Zisler, M, Aström, F, Petra, S and Schnörr, C (2018). Unsupervised Label Learning on Manifolds by Spatially Regularized Geometric Assignment. GCPR

Pages