Publications

Export 1965 results:
Author Title Type [ Year(Desc)]
2019
Adler, T J, Ayala, L, Ardizzone, L, Kenngott, H G, Vemuri, A, Müller-Stich, B P, Rother, C, Köthe, U and Maier-Hein, L (2019). Out of Distribution Detection for Intra-operative Functional Imaging. MICCAI UNSURE Workshop 2019. 11840 LNCS 75–82PDF icon PDF (3.1 MB)
Snajder, R (2019). Pipeline Für Die Automatisierte Objektsegmentierung Von 3D Lightshet Mikroskopiebildern. Heidelberg University
E Sanmartin, F, Damrich, S and Hamprecht, F A (2019). Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning. Advances in Neural Information Processing Systems
Bhowmik, A, Gumhold, S, Rother, C and Brachmann, E (2019). Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task. http://arxiv.org/abs/1912.00623
Li, J (2019). Robust Single Object Tracking Via Fully Convolutional Siamese Networks. Heidelberg University
Haußmann, M, Hamprecht, F A and Kandemir, M (2019). Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation. UAI. Proceedings. 563-573PDF icon Technical Report (1.04 MB)
Zisler, M, Zern, A, Petra, S and Schnörr, C (2019). Self-Assignment Flows for Unsupervised Data Labeling on Graphs. preprint: arXiv. https://arxiv.org/abs/1911.03472
Li, Y (2019). Semantic Instance Segmentation With The Multiway Mutex Watershed. Heidelberg University
Fita, E (2019). Semi-Supervised Distance-Based Segmentation. Heidelberg University
Voigt, P (2019). Simulation And Measurement Of The Water-Sided Viscous Shear Stress Without Waves. Institut für Umweltphysik, Universität Heidelberg, Germany
Storath, M, Kiefer, L and Weinmann, A (2019). Smoothing for signals with discontinuities using higher order Mumford-Shah models. Numerische Mathematik. 143(2) 423-460PDF icon Technical Report (1.09 MB)
Desana, M and Schnörr, C (2019). Sum-Product Graphical Models. Machine Learning. https://doi.org/10.1007/s10994-019-05813-2
Censor, Y, Petra, S and Schnörr, C (2019). Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case. preprint: arXiv. https://arxiv.org/abs/1911.05498
Großkinsky, (2019). Synaptic Cleft Prediction On Electron Microsope Images. Heidelberg University
Esposito, M, Hennersperger, C, Göbl, R, Demaret, L, Storath, M, Navab, N, Baust, M and Weinmann, A (2019). Total variation regularization of pose signals with an application to 3D freehand ultrasound. IEEE Transactions on Medical Imaging. 38(10) 2245-2258
Xiao, S (2019). Tracking Dividing Cells Using Spatio-Temporal Embeddings. Heidelberg University
Zern, A, Zisler, M, Petra, S and Schnörr, C (2019). Unsupervised Assignment Flow: Label Learning on Feature Manifolds by Spatially Regularized Geometric Assignment. preprint: arXiv. https://arxiv.org/abs/1904.10863
Zisler, M, Zern, A, Petra, S and Schnörr, C (2019). Unsupervised Labeling by Geometric and Spatially Regularized Self-Assignment. Proc. SSVM. Springer
Lorenz, D, Bereska, L, Milbich, T and Ommer, B (2019). Unsupervised Part-Based Disentangling of Object Shape and Appearance. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Oral + Best paper finalist: top 45 / 5160 submissions)
Esser, P, Haux, J and Ommer, B (2019). Unsupervised Robust Disentangling of Latent Characteristics for Image Synthesis. Proceedings of the Intl. Conf. on Computer Vision (ICCV). https://compvis.github.io/robust-disentangling/
Kotovenko, D, Sanakoyeu, A, Lang, S, Ma, P and Ommer, B (2019). Using a Transformation Content Block For Image Style Transfer. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Savarino, F and Schnörr, C (2019). A Variational Perspective on the Assignment Flow. Proc. SSVM. Springer
Ufer, N, Lui, K To, Schwarz, K, Warkentin, P and Ommer, B (2019). Weakly Supervised Learning of Dense SemanticCorrespondences and Segmentation. German Conference on Pattern Recognition (GCPR)PDF icon article (6.1 MB)
Pandey, N (2019). Weakly Supervised Semantic Segmentation. Heidelberg University
2020
Wolny, A, Cerrone, L, Vijayan, A, Tofanelli, R, Vilches-Barro, A, Louveaux, M, Wenzel, C, Strauss, S, Wilson-Sanchez, D, Lymbouridou, R, Steigleder, S S, Pape, C, Bailoni, A, Duran-Nebreda, S, Bassel, G W, Lohmann, J U, Tsiantis, M, Hamprecht, F A, Schneitz, K, Maizel, A and Kreshuk, A (2020). Accurate and Versatile 3D Segmentation of Plant Tissues at Cellular Resolution. eLife. 9
Krull, A, Hirsch, P, Rother, C, Schiffrin, A and Krull, C (2020). Artificial-intelligence-driven scanning probe microscopy. Communications Physics. 3
Schnörr, (2020). Assignment Flows. Handbook of Variational Methods for Nonlinear Geometric Data. Springer. 235—260. https://www.springer.com/gp/book/9783030313500
Zern, A, Zeilmann, A and Schnörr, C (2020). Assignment Flows for Data Labeling on Graphs: Convergence and Stability. preprint: arXiv. https://arxiv.org/abs/2002.11571
Radev, S T, Mertens, U K, Voss, A, Ardizzone, L and Köthe, U (2020). BayesFlow: Learning complex stochastic models with invertible neural networks. http://arxiv.org/abs/2003.06281PDF icon PDF (5.36 MB)
Haußmann, M, Gerwinn, S and Kandemir, M (2020). Bayesian Evidential Deep Learning with PAC Regularization . 3rd Symposium on Advances in Approximate Bayesian Inference
Kamann, C and Rother, C (2020). Benchmarking the Robustness of Semantic Segmentation Models. CVPR 2020. http://arxiv.org/abs/1908.05005PDF icon PDF (3.61 MB)
Kluger, F, Brachmann, E, Ackermann, H, Rother, C, Yang, M Ying and Rosenhahn, B (2020). CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus. CVPR 2020. http://arxiv.org/abs/2001.02643PDF icon PDF (9.95 MB)
Lang, S and Ommer, B (2020). Das Objekt jenseits der Digitalisierung. Das digitale Objekt. 7. http://www.deutsches-museum.de/fileadmin/Content/010_DM/060_Verlag/studies-7.pdfPDF icon lang_ommer_digitalhumanities_2020_.pdf (599.56 KB)
Dencker, T, Klinkisch, P, Maul, S M and Ommer, B (2020). Deep learning of cuneiform sign detection with weak supervision using transliteration alignment. PLoS ONE. 15. https://hci.iwr.uni-heidelberg.de/compvis/projects/cuneiform
Bollweg, S, Haußmann, M, Kasieczka, G, Luchmann, M, Plehn, T and Thompson, J (2020). Deep-Learning Jets with Uncertainties and More. SciPost Phys. 8. https://scipost.org/10.21468/SciPostPhys.8.1.006PDF icon Technical Report (1.65 MB)

Pages