Publications

Export 185 results:
Author [ Title(Desc)] Type Year
Filters: Author is Carsten Rother  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Rother, C and Carlsson, S (2002). Linear multi view reconstruction with missing data. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2351 209–324
Rother, C (2003). Linear Multi-View Reconstruction for Translating Cameras. Nada.Kth.Se. http://www.nada.kth.se/ carstenr/papers/paper_ssab03.pdf
Rother, C (2003). Linear multi-view reconstruction of points, lines, planes and cameras using a reference plane. Proceedings of the IEEE International Conference on Computer Vision. 2 1210–1217. http://www.nada.kth.se/carstenr
Li, W, Hosseini Jafari, O and Rother, C (2019). Localizing Common Objects Using Common Component Activation Map
Lempitsky, V, Rother, C and Blake, A (2007). LogCut - Efficient graph cut optimization for markov random fields. Proceedings of the IEEE International Conference on Computer Vision
Jancsary, J, Nowozin, S and Rother, C (2012). Loss-specific training of non-parametric image restoration models: A new state of the art. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 7578 LNCS 112–125
Jancsary, J, Nowozin, S and Rother, C (2012). Loss-specific training of non-parametric image restoration models: A new state of the art. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 7578 LNCS 112–125
Pinggera, P, Ramos, S, Gehrig, S, Franke, U, Rother, C and Mester, R (2016). Lost and found: Detecting small road hazards for self-driving vehicles. IEEE International Conference on Intelligent Robots and Systems. 2016-Novem 1099–1106. http://www.6d-vision.com/lostandfounddataset
M
Richmond, D L, Kainmueller, D, Yang, M Y, Myers, E W and Rother, C (2016). Mapping auto-context decision forests to deep convnets for semantic segmentation. British Machine Vision Conference 2016, BMVC 2016. 2016-Septe 144.1–144.12. http://arxiv.org/abs/1507.07583
Richmond, D L, Kainmueller, D, Yang, M Y, Myers, E W and Rother, C (2016). Mapping auto-context decision forests to deep convnets for semantic segmentation. British Machine Vision Conference 2016, BMVC 2016. 2016-Septe 144.1–144.12. https://github.com/BVLC/caffe/wiki/Model-Zoo\#fcn
Richmond, D L, Kainmueller, D, Yang, M Y, Myers, E W and Rother, C (2016). Mapping auto-context decision forests to deep convnets for semantic segmentation. British Machine Vision Conference 2016, BMVC 2016. 2016-Septe 144.1–144.12
Kirillov, A, Schlesinger, D, Vetrov, D, Rother, C and Savchynskyy, B (2015). M-best-diverse labelings for submodular energies and beyond. Advances in Neural Information Processing Systems. 2015-Janua 613–621
Kolmogorov, V and Rother, C (2007). Minimizing nonsubmodular functions with graph cuts - A review. IEEE Transactions on Pattern Analysis and Machine Intelligence. 29 1274–1279
Rother, C, Kohli, P, Feng, W and Jia, J (2010). Minimizing sparse higher order energy functions of discrete variables. 1382–1389
Tourani, S, Shekhovtsov, A, Rother, C and Savchynskyy, B (2018). MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical Models. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11208 LNCS 264–281
Rother, C (2003). Multi-View Reconstruction and Camera Recovery using a Real or Virtual Reference Plane. http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0CDUQFjAD&url=http%3A%2F%2Fwww.nada.kth.se%2Futbildning%2Fforsk.utb%2Favhandlingar%2Fdokt%2Frother.pdf&ei=AyX_VPKmIomeNqeOgpgL&usg=AFQjCNHCmc75P5EHYWLtBUaHtUAs4yOnJw&bvm=bv.
N
Brachmann, E and Rother, C (2019). Neural-guided RANSAC: Learning where to sample model hypotheses. Proceedings of the IEEE International Conference on Computer Vision. 2019-Octob 4321–4330. http://arxiv.org/abs/1905.04132PDF icon PDF (8.02 MB)
Singaraju, D, Rother, C and Rhemann, C (2010). New appearance models for natural image matting. 659–666
Singaraju, D, Rother, C and Rhemann, C (2009). New appearance models for natural image matting. 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009. 2009 IEEE 659–666
Rother, C (2002). A new approach to vanishing point detection in architectural environments. Image and Vision Computing. 20 647–655
Jancsary, J, Nowozin, S and Rother, C (2012). Non-parametric crfs for image labeling. NIPS Workshop Modern Nonparametric Methods in Machine Learning. 1–5. http://www.nowozin.net/sebastian/papers/jancsary2012nonparametriccrf.pdf
Márquez-Neila, P, Kohli, P, Rother, C and Baumela, L (2014). Non-parametric higher-order random fields for image segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8694 LNCS 269–284
O
Vicente, S, Rother, C and Kolmogorov, V (2011). Object cosegmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2217–2224
Zheng, S, Prisacariu, V Adrian, Averkiou, M, Cheng, M Ming, Mitra, N J, Shotton, J, Torr, P H S and Rother, C (2015). Object proposals estimation in depth image using compact 3D shape manifolds. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 9358 196–208
Bleyer, M, Rother, C, Kohli, P, Scharstein, D and Sinha, S (2011). Object stereo Joint stereo matching and object segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 3081–3088
Jug, F, Pietzsch, T, Kainmüller, D, Funke, J, Kaiser, M, van Nimwegen, E, Rother, C and Myers, G (2014). Optimal joint segmentation and tracking of escherichia coli in the mother machine. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8677 25–36
Rother, C, Kolmogorov, V, Lempitsky, V and Szummer, M (2007). Optimizing binary MRFs via extended roof duality. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Rother, C, Kolmogorov, V, Lempitsky, V and Szummer, M (2007). Optimizing Binary MRFs via Extended Roof Duality Technical Report MSR-TR-2007-46. Computing. http://research.microsoft.com/vision/cambridge/
Adler, T J, Ayala, L, Ardizzone, L, Kenngott, H G, Vemuri, A, Müller-Stich, B P, Rother, C, Köthe, U and Maier-Hein, L (2019). Out of Distribution Detection for Intra-operative Functional Imaging. MICCAI UNSURE Workshop 2019. 11840 LNCS 75–82PDF icon PDF (3.1 MB)
P
Mitra, N J, Stam, J, Xu, K, Cheng, M - M, Prisacariu, V Adrian, Zheng, S, Torr, P H S and Rother, C (2015). Pacific Graphics 2015 DenseCut: Densely Connected CRFs for Realtime GrabCut. 34. http://mftp.mmcheng.net/Papers/DenseCut.pdf
Kohli, P, Shekhovtsov, A, Rother, C, Kolmogorov, V and Torr, P (2008). On partial optimality in multi-label MRFs. Proceedings of the 25th International Conference on Machine Learning. 480–487
Bleyer, M, Rhemann, C and Rother, C (2011). PatchMatch Stereo - Stereo Matching with Slanted Support Windows. 14.1–14.11
Rhemann, C, Rother, C, Wang, J, Gelautz, M, Kohli, P and Rott, P (2009). A perceptually motivated online benchmark for image matting. 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009. 2009 IEEE 1826–1833. www.alphamatting.com.
Rhemann, C, Rother, C, Wang, J, Gelautz, M, Kohli, P and Rott, P (2009). A perceptually motivated online benchmark for image matting. 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009. 2009 IEEE 1826–1833. www.alphamatting.com.
Rhemann, C, Rother, C, Wang, J, Gelautz, M, Kohli, P and Rott, P (2009). A perceptually motivated online benchmark for image matting. 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009. 2009 IEEE 1826–1833

Pages