Export 1492 results:
Author Title Type [ Year(Asc)]
Bendinger, A L, Debus, C, Glowa, C, Karger, C P, Peter, J and Storath, M (2019). Bolus arrival time estimation in dynamic contrast-enhanced magnetic resonance imaging of small animals based on spline models, in press. Physics in Medicine and Biology. 64
Sanakoyeu, A, Tschernezki, V, Büchler, U and Ommer, B (2019). Divide and Conquer the Embedding Space for Metric Learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Cerrone, L, Zeilmann, A and Hamprecht, F A (2019). End-to-End Learned Random Walker for Seeded Image Segmentation. CVPR. Proceedings, in press
Kirschbaum, E, Haußmann, M, Wolf, S, Sonntag, H, Schneider, J, Elzoheiry, S, Kann, O, Durstewitz, D and Hamprecht, F A (2019). LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos. ICLR. Proceedings
Bengio, Y, Deleu, T, Rahaman, N, Ke, R, Lachapelle, S, Bilaniuk, O, Goyal, A and Pal, C (2019). A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms. arXiv preprint arXiv:1901.10912PDF icon Technical Report (871.59 KB)
Li, J (2019). Robust Single Object Tracking Via Fully Convolutional Siamese Networks. Heidelberg University
Li, Y (2019). Semantic Instance Segmentation With The Multiway Mutex Watershed. Heidelberg University
Lorenz, D, Bereska, L, Milbich, T and Ommer, B (2019). Unsupervised Part-Based Disentangling of Object Shape and Appearance. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Oral)
Kotovenko, D, Sanakoyeu, A, Lang, S, Ma, P and Ommer, B (2019). Using a Transformation Content Block For Image Style Transfer. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Lang, S and Ommer, B (2018). Attesting Similarity: Supporting the Organization and Study of Art Image Collections with Computer Vision. Digital Scholarship in the Humanities, Oxford University Press. 33 845-856
H Alhaija, A, Mustikovela, S K, Mescheder, A, Geiger, C and Rother, C (2018). Augmented Reality Meets Computer Vision Efficient Data Generation for Urban Driving Scenes. IJCV. 1-12PDF icon Technical Report (3.83 MB)
Bell, P and Ommer, B (2018). Computer Vision und Kunstgeschichte — Dialog zweier Bildwissenschaften. Computing Art Reader: Einführung in die digitale Kunstgeschichte, P. Kuroczyński et al. (ed.)PDF icon 413-17-83318-2-10-20181210.pdf (2.98 MB)
Sayed, N, Brattoli, B and Ommer, B (2018). Cross and Learn: Cross-Modal Self-Supervision. German Conference on Pattern Recognition (GCPR) (Oral). Stuttgart, Germany. icon Article (891.47 KB)PDF icon Oral slides (9.17 MB)
Cerrone, L (2018). Deep End-To-End Learning Of A Diffusion Process For Seeded Image Segmentation. Heidelberg University
Sanakoyeu, A, Bautista, M and Ommer, B (2018). Deep Unsupervised Learning of Visual Similarities. Pattern Recognition. 78. PDF icon PDF (8.35 MB)
Weilbach, C (2018). Dictionary Learning With Bayesian Gans For Few-Shot Classification. Heidelberg University
Wahl, A S, Erlebach, E, Brattoli, B, Büchler, U, Kaiser, J, Ineichen, V B, Mosberger, A C, Schneeberger, S, Imobersteg, S, Wieckhorst, M, Stirn, M, Schroeter, A, Ommer, B and Schwab, M E (2018). Early reduced behavioral activity induced by large strokes affects the efficiency of enriched environment in rats. Sage Journals. Journal of Cerebral Blood Flow & Metabolism. icon 0271678x18777661.pdf (770.87 KB)
Hehn, T and Hamprecht, F A (2018). End-to-end Learning of Deterministic Decision Trees. German Conference on Pattern Recognition. Proceedings. Springer. LNCS 11269 612-627PDF icon Technical Report (1.4 MB)
Draxler, F (2018). The Energy Landscape Of Deep Neural Networks. Heidelberg University
Draxler, F, Veschgini, K, Salmhofer, M and Hamprecht, F (2018). Essentially No Barriers in Neural Network Energy Landscape. ICML. Proceedings. 80 1308--1317PDF icon Technical Report (685.93 KB)
Storath, M and Weinmann, A (2018). Fast median filtering for phase or orientation data. IEEE Transactions on Pattern Analysis and Machine Intelligence. 40 639–652PDF icon Technical Report (7.32 MB)
Rathke, F and Schnörr, C (2018). Fast Multivariate Log-Concave Density Estimation. preprint: ArXiv. icon Technical Report (3.54 MB)
Fortun, D, Storath, M, Rickert, D, Weinmann, A and Unser, M (2018). Fast Piecewise-Affine Motion Estimation Without Segmentation. IEEE Transactions on Image Processing. 27 5612 - 5624
H Alhaija, A, Mustikovela, S K, Geiger, A and Rother, C (2018). Geometric Image Synthesis. ACCV. Proceedings, in pressPDF icon Technical Report (1.83 MB)
Hühnerbein, R, Savarino, F, Aström, F and Schnörr, C (2018). Image Labeling Based on Graphical Models Using Wasserstein Messages and Geometric Assignment. SIAM Journal on Imaging Sciences. 11 1317-1362PDF icon Technical Report (2.62 MB)
Büchler, U, Brattoli, B and Ommer, B (2018). Improving Spatiotemporal Self-Supervision by Deep Reinforcement Learning. Proceedings of the European Conference on Computer Vision (ECCV). (UB and BB contributed equally), Munich, GermanyPDF icon Article (5.34 MB)PDF icon buechler_eccv18_poster.pdf (1.65 MB)
O Jafari, H, Mustikovela, S K, Pertsch, K, Brachmann, E and Rother, C (2018). iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects. ACCV. Proceedings, in pressPDF icon Technical Report (3.28 MB)
Schimmel, F (2018). Learnability Of Approximated Graph Cut Segmentation. Heidelberg University
Weiler, M, Hamprecht, F A and Storath, M (2018). Learning Steerable Filters for Rotation Equivariant CNNs. CVPR
Ghori, O, Mackowiak, R, Bautista, M, Beuter, N, Drumond, L, Diego, F and Ommer, B (2018). Learning to Forecast Pedestrian Intention from Pose Dynamics. Intelligent Vehicles, IEEE, 2018
Erb, W, Weinmann, A, Ahlborg, M, Brandt, C, Bringout, G, Buzug, T M, Frikel, J, Kaethner, C, Knopp, T, März, T, Möddel, M, Storath, M and Weber, A (2018). Mathematical Analysis of the 1D Model and Reconstruction Schemes for Magnetic Particle Imaging. Inverse Problems. 34
Kiechle, M, Storath, M, Weinmann, A and Kleinsteuber, M (2018). Model-based learning of local image features for unsupervised texture segmentation. IEEE Transactions on Image Processing. 27 1994-2007
Beier, T (2018). Multicut Algorithms for Neurite Segmentation. Heidelberg University
Wolf, S, Pape, C, Bailoni, A, Rahaman, N, Kreshuk, A, Köthe, U and Hamprecht, F A (2018). The Mutex Watershed: Efficient, Parameter-Free Image Partitioning. ECCV. Proceedings, in press
Lang, S and Ommer, B (2018). Reconstructing Histories: Analyzing Exhibition Photographs with Computational Methods. Arts, Computational Aesthetics. 7, 64PDF icon arts-07-00064.pdf (4.6 MB)