Publications
U
Brachmann, E, Michel, F, Krull, A, Yang, M Ying, Gumhold, S and Rother, C (2016).
Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image.
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
2016-Decem 3364–3372
Brachmann, E, Michel, F, Krull, A, Yang, M Ying, Gumhold, S and Rother, C (2016).
Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image.
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
2016-Decem 3364–3372
P
Krull, A, Brachmann, E, Nowozin, S, Michel, F, Shotton, J and Rother, C (2017).
PoseAgent: Budget-constrained 6D object pose estimation via reinforcement learning.
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017.
2017-Janua 2566–2574.
http://arxiv.org/abs/1612.03779 Michel, F, Krull, A, Brachmann, E, Yang, M Ying, Gumhold, S and Rother, C (2015).
Pose Estimation of Kinematic Chain Instances via Object Coordinate Regression. 181.1–181.11
L
Krull, A, Brachmann, E, Michel, F, Yang, M Ying, Gumhold, S and Rother, C (2015).
Learning analysis-by-synthesis for 6d pose estimation in RGB-D images.
Proceedings of the IEEE International Conference on Computer Vision.
2015 Inter 954–962
G
Michel, F, Kirillov, A, Brachmann, E, Krull, A, Gumhold, S, Savchynskyy, B and Rother, C (2017).
Global hypothesis generation for 6D object pose estimation.
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017.
2017-Janua 115–124.
http://arxiv.org/abs/1612.02287 D
Brachmann, E, Krull, A, Nowozin, S, Shotton, J, Michel, F, Gumhold, S and Rother, C (2017).
DSAC - Differentiable RANSAC for camera localization.
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017.
2017-Janua 2492–2500.
http://arxiv.org/abs/1611.05705 C
Kluger, F, Brachmann, E, Ackermann, H, Rother, C, Yang, M Ying and Rosenhahn, B (2020).
CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus.
CVPR 2020.
http://arxiv.org/abs/2001.02643 PDF (9.95 MB) B
Hodaň, T, Michel, F, Brachmann, E, Kehl, W, Buch, A Glent, Kraft, D, Drost, B, Vidal, J, Ihrke, S, Zabulis, X, Sahin, C, Manhardt, F, Tombari, F, Kim, T Kyun, Matas, J and Rother, C (2018).
BOP: Benchmark for 6D object pose estimation.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
11214 LNCS 19–35.
http://arxiv.org/abs/1808.08319