M
D. Wierzimok and Jähne, B.,
“Measurement of wave-induced turbulent flow structure using digital image sequence analysis”, in
Air-Water Mass Transfer, selected papers from the 2nd International Symposium on Gas Transfer at Water Surfaces, September 11--14, 1990, Minneapolis, Minnesota, 1991, p. 200--209.
P. Geißler, Jähne, B., and Jähne, B.,
“Measurements of bubble size distributions with an optical technique based on depth from focus”, in
Air-Water Gas Transfer, Selected Papers, 3rd Intern. Symp. on Air-Water Gas Transfer, 1995, p. 351--362.
J. Dieter, Lauer, H., Jähne, B., and Grün, A.,
“Measurements of slope statistics on a wind driven water surface”, in
Optical 3D Measurement Techniques 4 - Applications in architecture, quality control, robotics, navigation, medical imaging and animation, 1997.
Y. Bengio, Deleu, T., Rahaman, N., Ke, R., Lachapelle, S., Bilaniuk, O., Goyal, A., and Pal, C.,
“A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms”,
arXiv preprint arXiv:1901.10912, 2019.
Technical Report (871.59 KB) M. Glas,
“Methoden zur sechsdimensionalen Objektlageerkennung aus Tiefenbildern”, vol. Dissertation. IWR, Fakultät für Physik und Astronomie, Univ. Heidelberg, 2012.
K. Roetmann, Schmunk, W., Garbe, C. S., and Beushausen, V.,
“Micro-flow analysis by molecular tagging velocimetry and planar raman-scattering”,
Exp. Fluids, vol. 44, p. 419--430, 2008.
C. Pape, Remme, R., Wolny, A., Olberg, S., Wolf, S., Cerrone, L., Cortese, M., Klaus, S., Lucic, B., Ullrich, S., Anders-Össwein, M., Wolf, S., Cerikan, B., Neufeldt, C. J., Ganter, M., Schnitzler, P., Merle, U., Lusic, M., Boulant, S., Stanifer, M., Bartenschlager, R., Hamprecht, F. A., Kreshuk, A., Tischer, C., Kräusslich, H. - G., Müller, B., and Laketa, V.,
“Microscopy-based assay for semi-quantitative detection of SARS-CoV-2 specific antibodies in human sera”,
BioEssays, vol. 43, no. 3, 2021.
H. Schilling, Gutsche, M., Brock, A., Späth, D., Rother, C., and Krispin, K.,
“Mind the Gap – A Benchmark for Dense Depth Prediction beyond Lidar”, in
2nd Workshop on Safe Artificial Intelligence for Automated Driving, in conjunction with CVPR 2020, 2020.
P. J. Gee, Hamprecht, F. A., Schuler, L. D., van Gunsteren, W. F., Duchardt, E., Schwalbe, H., Albert, M., and Seebach, D.,
“A molecular dynamics simulation study of the conformational preferences of oligo-(3- hydroxyalcanoic acids) in chloroform solution”,
Helv. Chim. Acta, vol. 85, pp. 618-632, 2002.
P. Geißler, Scholz, T., Jähne, B., and Haußecker, H.,
“Monitoring living biomass with in situ microscopy”,
Computer Vision and Applications. A Guide for Students and Practitioners. Academic Press, p. 632--633, 2000.
M. Enzweiler and Gavrila, D. M.,
“Monocular Pedestrian Detection: Survey and Experiments”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, available online: IEEE Computer Society Digital Library, http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.260, 2008.
H. Haußecker, Spies, H., Jähne, B., Geißler, P., and Haußecker, H.,
“Motion”,
Handbook of Computer Vision and Applications, vol. 2: Signal Processing and Pattern Recognition. Academic Press, p. 309--396, 1999.
D. Uttenweiler, Veigel, C., Steubing, R., Götz, C., Mann, S., Haußecker, H., Jähne, B., and Fink, R. H. A.,
“Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method.”,
Biophys J, vol. 78, p. 2709--2715, 2000.
D. Kondermann, Kondermann, C., Berthe, A., Kertzscher, U., and Garbe, C. S.,
“Motion Estimation Based on a Temporal Model of Fluid Flows”, in
13th International Symposium on Flow Visualization, 2008, pp. 1-10.
B. Jähne, Herrmann, H., Jähne, B., and Haußecker, H.,
“Multimedia architectures”,
Handbook of Computer Vision and Applications, vol. 3: Systems and Applications. Academic Press, p. 31--52, 1999.
B. Jähne, Jähne, B., Haußecker, H., and Geißler, P.,
“Multiresolutional signal representation”,
Handbook of Computer Vision and Applications, vol. 2. Academic Press, p. 67--90, 1999.
M. Kandemir, Klami, A., Gonen, M., Vetek, A., and Kaski, S.,
“Multi-task and multi-view learning of user state”,
Neurocomputing, vol. 139, pp. 97-106, 2014.