J. Jancsary, Nowozin, S., and Rother, C.,
“Loss-specific training of non-parametric image restoration models: A new state of the art”, in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, vol. 7578 LNCS, pp. 112–125.
P. Pinggera, Ramos, S., Gehrig, S., Franke, U., Rother, C., and Mester, R.,
“Lost and found: Detecting small road hazards for self-driving vehicles”, in
IEEE International Conference on Intelligent Robots and Systems, 2016, vol. 2016-Novem, pp. 1099–1106.
D. L. Richmond, Kainmueller, D., Yang, M. Y., Myers, E. W., and Rother, C.,
“Mapping auto-context decision forests to deep convnets for semantic segmentation”, in
British Machine Vision Conference 2016, BMVC 2016, 2016, vol. 2016-Septe, pp. 144.1–144.12.
D. L. Richmond, Kainmueller, D., Yang, M. Y., Myers, E. W., and Rother, C.,
“Mapping auto-context decision forests to deep convnets for semantic segmentation”, in
British Machine Vision Conference 2016, BMVC 2016, 2016, vol. 2016-Septe, pp. 144.1–144.12.
D. L. Richmond, Kainmueller, D., Yang, M. Y., Myers, E. W., and Rother, C.,
“Mapping auto-context decision forests to deep convnets for semantic segmentation”, in
British Machine Vision Conference 2016, BMVC 2016, 2016, vol. 2016-Septe, pp. 144.1–144.12.
M. Welk, Becker, F., Schnörr, C., and Weickert, J.,
“Matrix-Valued Filters as Convex Programs”, in
Scale-Space 2005, 2005, vol. 3459, pp. 204–216.
A. Kirillov, Schlesinger, D., Vetrov, D., Rother, C., and Savchynskyy, B.,
“M-best-diverse labelings for submodular energies and beyond”, in
Advances in Neural Information Processing Systems, 2015, vol. 2015-Janua, pp. 613–621.