Publications

Export 1515 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Schmidt, S, Kappes, J H, Bergtholdt, M, Pekar, V, Dries, S, Bystrov, D and Schnörr, C (2007). Spine Detection and Labeling Using a Parts-Based Graphical Model. Proc. 20th International Conference on Information Processing in Medical Imaging (IPMI 2007). Springer. 4584 122-133PDF icon Technical Report (1.46 MB)
Schmidt, M (2008). Optische Methoden Zur Form- Und Positionserkennung Von Körpern In Werkzeugmaschinen. Fried­rich-Schil­ler-Uni­ver­si­tät Je­na
Schmidt, M, Jehle, M and Jähne, B (2008). Range flow estimation based on photonic mixing device data. Int. J. Intelligent Systems Technologies and Applications. 5 380--392
Schmitzer, B and Schnörr, C (2013). Contour Manifolds and Optimal Transport
Schmitzer, B and Schnörr, C (2013). Modelling convex shape priors and matching based on the Gromov-Wasserstein distance. Journal of Mathematical Imaging and Vision. 46 143-159PDF icon Technical Report (957.78 KB)
Schmitzer, B and Schnörr, C (2015). Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein Modes. J.~Math.~Imag.~Vision. 52 436--458. http://link.springer.com/article/10.1007/s10851-014-0546-8PDF icon Technical Report (1.97 MB)
Schmitzer, B and Schnörr, C (2013). Object Segmentation by Shape Matching with Wasserstein Modes. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2013). 123-136
Schmitzer, B and Schnörr, C (2012). Weakly Convex Coupling Continuous Cuts and Shape Priors. Scale Space and Variational Methods (SSVM 2011). 423-434
Schmitzer, B and Schnörr, C (2014). Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein ModesPDF icon Technical Report (2.9 MB)
Schmitzer, B and Schnörr, C (2013). A Hierarchical Approach to Optimal Transport. Scale Space and Variational Methods (SSVM 2013). 452-464
Schmund, D (1999). Development of an Optical Flow Based System for the Precise Measurement of Plant Growth. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg
Schmund, D, Stitt, M, Jähne, B and Schurr, U (1998). Quantitative analysis of the local rates of growth of dicot leaves at a high temporal and spatial resolution, using image sequence analysis. Plant Journal. 16 505--514
Schmund, D, Schurr, U, Jähne, B, Haußecker, H and Geißler, P (1999). Plant-leaf growth studied by image sequence analysis. Handbook of Computer Vision and Applications. Academic Press. 3: Systems and Applications 719-735
Schmund, D, Schurr, U and Jähne, B (2000). Optical leaf growth analysis. Computer Vision and Applications - A Guide for Students and Practitioners. Academic Press. 640-641
Schmund, D, Münsterer, T, Lauer, H, Jähne, B and Jähne, B (1995). The circular wind wave facilities at the University of Heidelberg. Air-Water Gas Transfer - Selected papers from the Third International Symposium on Air-Water Gas Transfer. AEON. 505--516
Schmund, D (1995). Voruntersuchung Der Einsatzmöglichkeiten Digitaler Bildverarbeitung Zur Analyse Von Transportvorgängen Und Wachstumsprozessen In Pflanzen. University of Heidelberg
Schnieders, J (2011). Investigation Of Momentum Transfer Across The Air-Sea Interface By Means Of Active And Passive Thermography. Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg
Schnörr, (1994). Segmentation of Visual Motion by Minimizing Convex Non-Quadratic Functionals. 12th Int. Conf. on Pattern Recognition
Schnörr, C and Peckar, W (1995). Motion-Based Identification of Deformable Templates. Proc. 6th Int. Conf. on Computer Analysis of Images and Patterns (CAIP '95). Springer Verlag. 970 122-129
Schnörr, (2007). Signal and Image Approximation with Level-Set Constraints. Computing. 81 137-160PDF icon Technical Report (506.8 KB)
Schnörr, (1991). Funktionalanalytische Methoden zur Bestimmung von Bewegungsinformation aus TV-Bildfolgen. Fakultät für Informatik, Universität Karlsruhe (TH)
Schnörr, C, Stiehl, H S and Grigat, R - R (1996). On Globally Asymptotically Stable Continuous-Time CNNs for Adaptive Smoothing of Multidimensional Signals. Proc. 4th IEEE Int. Workshop on Cellular Neural Networks and their Applications
Schnörr, (1989). Zur Schätzung von Geschwindigkeitsvektorfeldern in Bildfolgen mit einer richtungsabhängigen Glattheitsforderung. Mustererkennung 1989, 11. DAGM-Symposium. Springer-Verlag. 219 294--301
Schnörr, (1996). Representation Of Images By A Convex Variational Diffusion Approach. FB Informatik
Schnörr, C, Niemann, H and Kopecz, J (1993). Architekturkonzepte zur Bildauswertung. Grundlagen und Anwendungen der Künstlichen Intelligenz, 17. Fachtagung für Künstliche Intelligenz. Springer-Verlag. 268--274
Schnörr, (1994). Bewegungssegmentation von Bildfolgen durch die Minimierung konvexer nicht-quadratischer Funktionale. Mustererkennung 1994. Technische Universität Wien. 5 178--185
Schnörr, (1992). Computation of Discontinuous Optical Flow by Domain Decomposition and Shape Optimization. IJCV. 8 153--165
(2000). Künstliche Intelligenz: Special Issue on Medical Computer Vision. 3
Schnörr, C, Sprengel, R and Neumann, B (1996). A Variational Approach to the Design of Early Vision Algorithms. Computing Suppl. 11 149-165
Schnörr, (1998). A Study of a Convex Variational Diffusion Approach for Image Segmentation and Feature Extraction. J. of Math. Imag. and Vision. 8 271--292
Schnörr, C and Neumann, B (1992). Ein Ansatz zur effizienten und eindeutigen Rekonstruktion stückweise glatter Funktionen. Mustererkennung 1992, 14. DAGM-Symposium. Springer-Verlag. 411--416
Schnörr, (1999). Variational Methods for Adaptive Image Smoothing and Segmentation. Handbook on Computer Vision and Applications: Signal Processing and Pattern Recognition. Academic Press. 2 451--484
Schnörr, (1993). On Functionals with Greyvalue-Controlled Smoothness Terms for Determining Optical Flow. PAMI. 15 1074--1079
Schnörr, C and Sprengel, R (1994). A Nonlinear Regularization Approach to Early Vision. Biol. Cybernetics. 72 141--149
Schnörr, (1998). Variational approaches to Image Segmentation and Feature Extraction. University of Hamburg, Comp.~Sci.~Dept.

Pages