Publications

Export 185 results:
Author [ Title(Asc)] Type Year
Filters: Author is Carsten Rother  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Shekhovtsov, A, Kohli, P and Rother, C (2012). Curvature prior for MRF-based segmentation and shape inpainting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 7476 LNCS 41–51
Shekhovtsov, A, Kohli, P and Rother, C (2012). Curvature prior for MRF-based segmentation and shape inpainting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 7476 LNCS 41–51. www.research.microsoft.com/vision/cambridge http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/papers/StereoSegmentation_PAMI06.pdf%5Cnpapers3://publication/uuid/F008E9F4-510D-4478-A3C0-1BFB22F6AEA0
Shekhovtsov, A, Kohli, P and Rother, C (2012). Curvature prior for MRF-based segmentation and shape inpainting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 7476 LNCS 41–51. http://arxiv.org/abs/1109.1480
Schlesinger, D, Jug, F, Myers, G, Rother, C and Kainmueller, D (2017). Crowd sourcing image segmentation with iaSTAPLE. Proceedings - International Symposium on Biomedical Imaging. 401–405
Vicente, S, Kolmogorov, V and Rother, C (2010). Cosegmentation revisited: Models and optimization. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 6312 LNCS 465–479
Rother, C, Kolmogorov, V, Minka, T and Blake, A (2006). Cosegmentation of image pairs by histogram matching - Incorporating a global constraint into MRFs. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1 994–1000. http://research.microsoft.com/vision/cambridge/
Royer, L A, Richmond, D L, Rother, C, Andres, B and Kainmueller, D (2016). Convexity shape constraints for image segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2016-Decem 402–410. http://arxiv.org/abs/1509.02122
Kluger, F, Brachmann, E, Ackermann, H, Rother, C, Yang, M Ying and Rosenhahn, B (2020). CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus. CVPR 2020. http://arxiv.org/abs/2001.02643PDF icon PDF (9.95 MB)
Arnab, A, Zheng, S, Jayasumana, S, Romera-paredes, B, Kirillov, A, Savchynskyy, B, Rother, C, Kahl, F and Torr, P (2018). Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation. Cvpr. XX 1–15. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.8889&rep=rep1&type=pdf%0Ahttp://dx.doi.org/10.1109/CVPR.2012.6248050
Kolmogorov, V and Rother, C (2006). Comparison of energy minimization algorithms for highly connected graphs. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 3952 LNCS 1–15
Kolmogorov, V and Rother, C (2006). Comparison of energy minimization algorithms for highly connected graphs. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 3952 LNCS 1–15
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 1-30PDF icon Technical Report (1.5 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. CoRR. http://arxiv.org/abs/1404.0533
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. Int.~J.~Comp.~VisionPDF icon Technical Report (5.12 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. CoRR. abs/1404.0533. http://hci.iwr.uni-heidelberg.de/opengm2/PDF icon Technical Report (3.32 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184. http://hci.iwr.uni-heidelberg.de/opengm2/
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Sungwoong, K, Kausler, B X, Lellmann, J, Komodakis, N and Rother, C (2013). A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems. CVPR 2013. ProceedingsPDF icon Technical Report (1.35 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Lellmann, J, Komodakis, N and Rother, C (2013). A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problem. CVPRPDF icon Technical Report (1.35 MB)
Szeliski, R, Zabih, R, Scharstein, D, Veksler, O, Kolmogorov, V, Agarwala, A, Tappen, M and Rother, C (2008). A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Transactions on Pattern Analysis and Machine Intelligence. Springer-Verlag. 30 1068–1080. http://vision.middlebury.edu/MRF.
Szeliski, R, Zabih, R, Scharstein, D, Veksler, O, Kolmogorov, V, Agarwala, A, Tappen, M and Rother, C (2008). A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Transactions on Pattern Analysis and Machine Intelligence. 30 1068–1080
Kannan, A, Winn, J and Rother, C (2007). Clustering appearance and shape by learning jigsaws. Advances in Neural Information Processing Systems. 657–664
Kannan, A, Winn, J and Rother, C (2007). Clustering appearance and shape by learning jigsaws. Advances in Neural Information Processing Systems. 657–664
Mackowiak, R, Lenz, P, Ghori, O, Diego, F, Lange, O and Rother, C (2019). CEREALS - Cost-Effective REgion-based Active Learning for Semantic Segmentation. British Machine Vision Conference 2018, BMVC 2018
Mustikovela, S Karthik, Yang, M Ying and Rother, C (2016). Can ground truth label propagation from video help semantic segmentation?. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 9915 LNCS 804–820
B
Lempitsky, V, Blake, A and Rother, C (2012). Branch-and-mincut: Global optimization for image segmentation with high-level priors. Journal of Mathematical Imaging and Vision. 44 315–329
Behl, A, Hosseini Jafari, O, Mustikovela, S Karthik, Abu Alhaija, H, Rother, C and Geiger, A (2017). Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?. Proceedings of the IEEE International Conference on Computer Vision. 2017-Octob 2593–2602
Behl, A, Hosseini Jafari, O, Mustikovela, S Karthik, Abu Alhaija, H, Rother, C and Geiger, A (2017). Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?. Proceedings of the IEEE International Conference on Computer Vision. 2017-Octob 2593–2602
Hodaň, T, Michel, F, Brachmann, E, Kehl, W, Buch, A Glent, Kraft, D, Drost, B, Vidal, J, Ihrke, S, Zabulis, X, Sahin, C, Manhardt, F, Tombari, F, Kim, T Kyun, Matas, J and Rother, C (2018). BOP: Benchmark for 6D object pose estimation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11214 LNCS 19–35. http://arxiv.org/abs/1808.08319
Kolmogorov, V, Criminisi, A, Blake, A, Cross, G and Rother, C (2005). Bi-layer segmentation of binocular stereo video. Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005. II 407–414. http://research.microsoft.com/vision/cambridge
Kamann, C and Rother, C (2019). Benchmarking the Robustness of Semantic Segmentation Models. http://arxiv.org/abs/1908.05005
Kruse, J, Ardizzone, L, Rother, C and Köthe, U (2019). Benchmarking Invertible Architectures On Inverse Problems
Gehler, P Vincent, Rother, C, Blake, A, Minka, T and Sharp, T (2008). Bayesian color constancy revisited. 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR

Pages