S
C. Leue, Geißler, P., Jähne, B., Jähne, B., Geißler, P., and Haußecker, H.,
“Segmentierung von Partikelbildern in der Strömungsvisualisierung”, in
Proceedings of 18th DAGM-Symposium Mustererkennung, 1996, p. 118--129.
C. Haubold, Schiegg, M., Kreshuk, A., Berg, S., Köthe, U., and Hamprecht, F. A.,
“Segmenting and Tracking Multiple Dividing Targets Using ilastik”, in
Focus on Bio-Image Informatics, vol. 219, Springer, 2016, pp. 199-229.
Technical Report (4.46 MB) H. Arlt, Sui, X., Folger, B., Adams, C., Chen, X., Remme, R., Hamprecht, F. A., DiMaio, F., Liao, M., Goodman, J. M., Farese, R. V., and Walther, T. C.,
“Seipin forms a flexible cage at lipid droplet formation sites”. bioRxiv, 2021.
B. Andres, Garbe, C. S., Schnörr, C., and Jähne, B.,
“Selection of local optical flow models by means of residual analysis”, in
Proceedings of the 29th DAGM Symposium on Pattern Recognition, 2007, p. 72--81.
S. K. Mustikovela, Jampani, V., De Mello, S., Liu, S., Iqbal, U., Rother, C., and Kautz, J.,
“Self-Supervised Viewpoint Learning From Image Collections”, in
CONSAC, 2020.
PDF (8.77 MB) A. Zouhar, Rother, C., and Fuchs, S.,
“Semantic 3-D labeling of ear implants using a global parametric transition prior”, in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 9350, pp. 177–184.
S. Wolf, Li, Y., Pape, C., Bailoni, A., Kreshuk, A., and Hamprecht, F. A.,
“The Semantic Mutex Watershed for Efficient Bottom-Up Semantic Instance Segmentation”,
ECCV. Proceedings. pp. 208-224, 2020.
M. Hullin, Klein, R., Schultz, T., Yao, A., Li, W., Hosseini Jafari, O., and Rother, C.,
“Semantic-Aware Image Smoothing”,
Vision, Modeling, and Visualization, 2017.
B. Maco, Cantoni, M., Holtmaat, A., Kreshuk, A., Hamprecht, F. A., and Knott, G. W.,
“Semiautomated Correlative 3D Electron Microscopy of In Vivo Imaged Axons and Dendrites”,
Nature Protocols, vol. 9, pp. 1354-1366, 2014.
Technical Report (2.01 MB) M. Heiler, Keuchel, J., and Schnörr, C.,
“Semidefinite Clustering for Image Segmentation with A-priori Knowledge”,
Pattern Recognition, Proc. 27th DAGM Symposium, vol. 3663. Springer, pp. 309–317, 2005.
A. Drory, Haubold, C., Avidan, S., and Hamprecht, F. A.,
“Semi-Global Matching: A Principled Derivation in Terms of Message Passing”, in
GCPR. Proceedings, 2014, pp. 43-53.
Technical Report (2.6 MB) L. Görlitz, Menze, B. H., Weber, M. - A., and Kelm, B. Michael,
“Semi-Supervised Tumor Detection in MRSI With Discriminative Random Fields”, in
Pattern Recognition, 2007, vol. 4713, pp. 224-233.
Technical Report (872.46 KB) S. Gerloff, Hagemann, A., Schnörr, C., Tieck, S., Stiehl, H. S., Dombrowski, R., Dreyer, M., and Wiesendanger, R.,
“Semi–Automated Analysis of SXM Images”, in
Proc. 9th Int. Conf. on Scanning Tunneling Microscopy/Spectroscopy and Related Techniques (STM'97), Hamburg, Germany, 1997.
E. - M. Didden, Thorarinsdottir, T. L., Lenkoski, A., and Schnörr, C.,
“Shape from Texture using Locally Scaled Point Processes”,
Image Anal. Stereol., vol. 34, pp. 161-170, 2015.
M. Amirul Islam, Kowal, M., Esser, P., Jia, S., Ommer, B., Derpanis, K. G., and Bruce, N.,
“Shape or Texture: Understanding Discriminative Features in CNNs”,
International Conference on Learning Representations (ICLR). 2021.
A. Monroy, Bell, P., and Ommer, B.,
“Shaping Art with Art: Morphological Analysis for Investigating Artistic Reproductions”, in
Proceedings of the European Conference on Computer Vision, Workshop on VISART, 2012, vol. 7583, p. 571--580.
Technical Report (7 MB)