Publications

Export 1915 results:
Author Title [ Type(Asc)] Year
Conference Paper
Zheng, S, Cheng, M Ming, Warrell, J, Sturgess, P, Vineet, V, Rother, C and Torr, P H S (2014). Dense semantic image segmentation with objects and attributes. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 3214–3221. http://www.robots.ox.ac.uk/˜tvg/http://tu-dresden.de/inf/cvld
Spies, H, Jähne, B and Barron, J L (2000). Dense range flow from depth and intensity data. ICPR. 131--134
Spies, H and Garbe, C S (2002). Dense parameter fields from total least squares. Proceedings of the 24th DAGM Symposium on Pattern Recognition. Springer. LNCS 2449 379--386
Lenzen, F, Schäfer, H and Garbe, C S (2011). Denoising Time-Of-Flight Data with Adaptive Total Variation. Proceedings ISVC. Springer. 337-346
Lenzen, F, Kim, K I, Schäfer, H, Nair, R, Meister, S, Becker, F and Garbe, C S (2013). Denoising Strategies for Time-of-Flight Data. Time-of-Flight Imaging: Algorithms, Sensors and Applications. Springer. 8200 24-25
Lou, X, Kaster, F O, Lindner, M, Kausler, B X, Köthe, U, Höckendorf, B, Wittbrodt, J, Jänicke, H and Hamprecht, F A (2011). DELTR: Digital Embryo Lineage Tree Reconstructor. Eighth IEEE International Symposium on Biomedical Imaging (ISBI). Proceedings. 1557-1560PDF icon Technical Report (1.44 MB)
van Vliet, P, Hering, F, Jähne, B and Jähne, B (1995). Delft Hydraulics Large Wind-Wave Flume. Air-Water Gas Transfer---Selected Papers from the Third International Symposium of Air--Water Gas Transfer in Heidelberg. AEON. 499--502
Bautista, M, Sanakoyeu, A and Ommer, B (2017). Deep Unsupervised Similarity Learning using Partially Ordered Sets. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon deep_unsupervised_similarity_learning_cvpr_2017_paper.pdf (905.82 KB)
Ufer, N and Ommer, B (2017). Deep Semantic Feature Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon article (8.88 MB)
Li, W, Hosseini Jafari, O and Rother, C (2019). Deep Object Co-segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11363 LNCS 638–653
Becker, F and Schnörr, C (2008). Decomposition of Quadratric Variational Problems. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 325--334PDF icon Technical Report (1.29 MB)
Becker, F and Schnörr, C (2008). Decomposition of Quadratric Variational Problems. Pattern Recognition -- 30th DAGM Symposium. 5096 325--334
Nowozin, S, Rother, C, Bagon, S, Sharp, T, Yao, B and Kohli, P (2011). Decision tree fields. Proceedings of the IEEE International Conference on Computer Vision. 1668–1675
Wanner, S, Meister, S and Goldlücke, B (2013). Datasets and Benchmarks for Densely Sampled 4D Light Fields. Vision, Modeling & Visualization. 225--226
Honauer, K, Johannsen, O, Kondermann, D and Goldlücke, B (2016). A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields. Computer Vision - ACCV 2016 : 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part III. Springer, Cham
Beier, T, Kröger, T, Kappes, J H, Köthe, U and Hamprecht, F A (2014). Cut, Glue and Cut: A Fast, Approximate Solver for Multicut Partitioning. 2014 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2014, Columbus, OH, USA, June 23-28, 2014. http://dx.doi.org/10.1109/CVPR.2014.17PDF icon Technical Report (10.06 MB)
Shekhovtsov, A, Kohli, P and Rother, C (2012). Curvature prior for MRF-based segmentation and shape inpainting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 7476 LNCS 41–51
Shekhovtsov, A, Kohli, P and Rother, C (2012). Curvature prior for MRF-based segmentation and shape inpainting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 7476 LNCS 41–51. www.research.microsoft.com/vision/cambridge http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/papers/StereoSegmentation_PAMI06.pdf%5Cnpapers3://publication/uuid/F008E9F4-510D-4478-A3C0-1BFB22F6AEA0
Shekhovtsov, A, Kohli, P and Rother, C (2012). Curvature prior for MRF-based segmentation and shape inpainting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 7476 LNCS 41–51. http://arxiv.org/abs/1109.1480
Maier-Hein, L, Mersmann, S, Kondermann, D, Stock, C, Kenngott, H, Sanchez, A, Wagner, M, Preukschas, A, Wekerle, A - L, Helfert, S, Bodenstedt, S and Speidel, S (2014). Crowdsourcing for reference correspondence generation in endoscopic images. MICCAI
Schlesinger, D, Jug, F, Myers, G, Rother, C and Kainmueller, D (2017). Crowd sourcing image segmentation with iaSTAPLE. Proceedings - International Symposium on Biomedical Imaging. 401–405
Fehr, J, Reisert, M and Burkhardt, H (2009). Cross-Correlation and Rotation Estimation of Local 3D Vector FieldPatches. Proceedings of the ISVC 2009, Part I. Springer. 5875 287-296
Sayed, N, Brattoli, B and Ommer, B (2018). Cross and Learn: Cross-Modal Self-Supervision. German Conference on Pattern Recognition (GCPR) (Oral). Stuttgart, Germany. https://arxiv.org/abs/1811.03879v1PDF icon Article (891.47 KB)PDF icon Oral slides (9.17 MB)
Jähne, B, Waas, S and Klinke, J (1992). A critical theoretical review of optical techniques for short ocean wave measurements. Optics of the Air-Sea Interface: Theory and Measurements. 1749 204--215
Güssefeld, B, Honauer, K and Kondermann, D (2016). Creating Feasible Reflectance Data for Synthetic Optical Flow Datasets. Advances in Visual Computing - 12th International Symposium, {ISVC} 2016, Las Vegas, NV, USA, December 12-14, 2016, Proceedings, Part {I}
Vicente, S, Kolmogorov, V and Rother, C (2010). Cosegmentation revisited: Models and optimization. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 6312 LNCS 465–479
Rother, C, Kolmogorov, V, Minka, T and Blake, A (2006). Cosegmentation of image pairs by histogram matching - Incorporating a global constraint into MRFs. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1 994–1000. http://research.microsoft.com/vision/cambridge/
Royer, L A, Richmond, D L, Rother, C, Andres, B and Kainmueller, D (2016). Convexity shape constraints for image segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2016-Decem 402–410. http://arxiv.org/abs/1509.02122
Schnörr, (1996). Convex Variational Segmentation of Multi-Channel Images. Proc. 12th Int. Conf. on Analysis and Optimization of Systems: Images, Wavelets and PDE's. Springer-Verlag, Paris. 219
Yuan, J, Schnörr, C, Kohlberger, T and Ruhnau, P (2004). Convex Set-Based Estimation of Image Flows. ICPR 2004 – 17th Int. Conf. on Pattern Recognition. IEEE, Cambridge, UK. 1 124-127
Keuchel, J, Schellewald, C, Cremers, D and Schnörr, C (2001). Convex Relaxations for Binary Image Partitioning and Perceptual Grouping. Mustererkennung 2001. Springer, Munich, Germany. 2191 353–360
Silvestri, F, Reinelt, G and Schnörr, C (2015). A Convex Relaxation Approach to the Affine Subspace Clustering Problem. Proc.~GCPRPDF icon Technical Report (878.63 KB)
Lellmann, J, Becker, F and Schnörr, C (2009). Convex Optimization for Multi-Class Image Labeling with a Novel Family of Total Variation Based Regularizers. IEEE International Conference on Computer Vision (ICCV). 646 -- 653PDF icon Technical Report (930.18 KB)
Lellmann, J, Becker, F and Schnörr, C (2009). Convex Optimization for Multi-Class Image Labeling with a Novel Family of Total Variation Based Regularizers. Proceedings of the IEEE Conference on Computer Vision (ICCV 09) Kyoto, Japan. 646-653
Lellmann, J, Kappes, J H, Yuan, J, Becker, F, Schnörr, C, Mórken, K and Lysaker, M (2009). Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation. Scale Space and Variational Methods in Computer Vision (SSVM 2009). Springer. 5567 150-162

Pages