In Press

Storath, M and Weinmann, A (In Press). Fast median filtering for phase or orientation data. IEEE Transactions on Pattern Analysis and Machine IntelligencePDF icon Technical Report (7.32 MB), Circle Median Filter


Vianello, A, Manfredi, G, Diebold, M and Jähne, B (2017). 3D reconstruction by a combined structure tensor and Hough transform light field approach. tm - Technisches Messen
Hehn, T (2017). A Probabilistic Approach To Learn Complex Differentiable Split Functions In Decision Trees Using Gradient Ascent. Heidelberg University
Kandemir, M, Hamprecht, F A, Wojek, C and Schmidt, U (2017). Active machine learning for training an event classification. Patent, Patent Number WO2017032775 A1
Brosowsky, M (2017). Cluster Resolving For Animal Tracking: Multi Hypotheses Tracking With Part Based Model For Object Hypotheses Generation And Pose Estimation. University of Heidelberg
Peter, S, Diego, F, Hamprecht, F A and Nadler, B (2017). Cost-efficient Gradient Boosting. NIPS, accepted
Ufer, N and Ommer, B (2017). Deep Semantic Feature Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon article (8.88 MB)
Bautista, M, Sanakoyeu, A and Ommer, B (2017). Deep Unsupervised Similarity Learning using Partially Ordered Sets. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon deep_unsupervised_similarity_learning_cvpr_2017_paper.pdf (905.82 KB)
Haubold, C, Uhlmann, V, Unser, M and Hamprecht, F A (2017). Diverse M-best Solutions by Dynamic Programming. GCPR, accepted
Storath, M, Brandt, C, Hofmann, M, Knopp, T, Salamon, J, Weber, A and Weinmann, A (2017). Edge preserving and noise reducing reconstruction for magnetic particle imaging. IEEE Transactions on Medical Imaging. 36 74 - 85PDF icon Technical Report (1.43 MB)
Storath, M, Rickert, D, Unser, M and Weinmann, A (2017). Fast segmentation from blurred data in 3D fluorescence microscopy. IEEE Transactions on Image Processing. 26
Hennies, J (2017). Improvement And Validation Of Neural Em Volume Image Segmentation By High-Level Information. University of Heidelberg
Haller, A (2017). Interactive Watershed Based Segmentation For Biological Images. University of Heidelberg
Storath, M, Weinmann, A and Unser, M (2017). Jump-penalized least absolute values estimation of scalar or circle-valued signals. Information and Inference. 6 225–245PDF icon Technical Report (3.4 MB)
Schott, L (2017). Learned Watershed Algorithm: End-To-End Learning Of Seeded Segmentation. Heidelberg University
Bautista, M, Fuchs, P and Ommer, B (2017). Learning Where to Drive by Watching Others. Proceedings of the German Conference Pattern Recognition. Springer-Verlag, Basel. 1, Learning Where to Drive by Watching Others
Rathke, F, Desana, M and Schnörr, C (2017). Locally Adaptive Probabilistic Models for Global Segmentation of Pathological OCT Scans. MICCAI. Proceedings, in pressPDF icon Technical Report (4.79 MB)
Brattoli, B, Büchler, U, Wahl, A S, Schwab, M E and Ommer, B (2017). LSTM Self-Supervision for Detailed Behavior Analysis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (BB and UB contributed equally)PDF icon Article (8.75 MB)
Kandemir, M, Hamprecht, F A, Wojek, C and Schmidt, U (2017). Maschinelles Lernen. Patent, Patent Number WO2017032775A1PDF icon Technical Report (317.04 KB)
Balluff, B, Hanselmann, M and Heeren, R M A (2017). Mass spectrometry imaging for the investigation of intratumor heterogeneity. Advances in Cancer Research. Elsevier. 134 201-230
Beier, T, Pape, C, Rahaman, N, Prange, T, Berg, S, Bock, D, Cardona, A, Knott, G W, Plaza, S M, Scheffer, L K, Köthe, U, Kreshuk, A and Hamprecht, F A (2017). Multicut brings automated neurite segmentation closer to human performance. Nature Methods. 14 101-102.
Krasowki, N, Beier, T, Knott, G, Köthe, U, Hamprecht, F A and Kreshuk, A (2017). Neuron Segmentation with High-Level Biological Priors. IEEE Transactions on Medical Imaging, in press
Wahl, A S, Büchler, U, Brändli, A, Brattoli, B, Musall, S, Kasper, H, Ineichen, B V, Helmchen, F, Ommer, B and Schwab, M E (2017). Optogenetically stimulating the intact corticospinal tract post-stroke restores motor control through regionalized functional circuit formation. Nature Communications. (ASW & UB contributed equally; BO and MES contributed equally)
Haubold, C (2017). Scalable Inference for Multi-Target Tracking on Proliferating Cells. University of Heidelberg
Sümer, Ö, Dencker, T and Ommer, B (2017). Self-supervised Learning of Pose Embeddings from Spatiotemporal Relations in Videos. To appear in ICCV 2017PDF icon Paper (3.98 MB)PDF icon Supplementary Material (3.36 MB)
Peter, S, Kirschbaum, E, Both, M, Campbell, L A, Harvey, B K, Heins, C, Durstewitz, D, Diego, F and Hamprecht, F A (2017). Sparse convolutional coding for neuronal assembly detection. NIPS, accepted
Milbich, T, Bautista, M, Sutter, E and Ommer, B (2017). Unsupervised Video Understanding by Reconciliation of Posture Similarities. Proceedings of the IEEE International Conference on Computer Vision (ICCV).
Haußmann, M, Hamprecht, F A and Kandemir, M (2017). Variational Bayesian Multiple Instance Learning with Gaussian Processes. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 6570-6579PDF icon Technical Report (1.29 MB)


Vianello, A, Manfredi, G, Diebold, M and Jähne, B (2016). 3D Reconstruction by a Combined Structure Tensor and Hough Transform Light-Field Approach. Forum Bildverarbeitung.
Honauer, K, Johannsen, O, Kondermann, D and Goldlücke, B (2016). A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields. Computer Vision - ACCV 2016 : 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part III. Springer, Cham
Swoboda, P, Kuske, J and Savchynskyy, B (2016). A Dual Ascent Framework for Lagrangean Decomposition of Combinatorial Problems. arXiv, preprint.
Schilling, H, Diebold, M, Gutsche, M, Aziz-Ahmad, H and Jähne, B (2016). A fractal calibration pattern for improved camera calibration. Forum Bildverarbeitung.
Haubold, C, Ales, J, Wolf, S and Hamprecht, F A (2016). A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets. ECCV. Proceedings. Springer. LNCS 9911 566-582PDF icon Technical Report (1.18 MB)
Beier, T, Andres, B, Köthe, U and Hamprecht, F A (2016). An Efficient Fusion Move Algorithm for the Minimum Cost Lifted Multicut Problem. ECCV. Proceedings. Springer. LNCS 9906 715-730PDF icon Technical Report (4.89 MB)
Krasowski, N (2016). Automated Segmentation for Connectomics Utilizing Higher-Order Biological Priors. University of Heidelberg
Pape, C (2016). Automatic Segmentation Of Neurites From Anisotropic Em-Imaging. University of Heidelberg
Prange, T (2016). Automatic Segmentation Of Neurons In Electron Microscopy Data With Membrane Defects. University of Heidelberg
Wolf, S (2016). Cell Tracking With Graphical Model Using Higher Order Features On Track Segments. University of Heidelberg
Bautista, M, Sanakoyeu, A, Sutter, E and Ommer, B (2016). CliqueCNN: Deep Unsupervised Exemplar Learning. Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS). MIT Press, Barcelona. icon Article (5.79 MB), Video Presentation
Baust, M, Weinmann, A, Wieczorek, M, Lasser, T, Storath, M and Navab, N (2016). Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging based on a Riemannian Manifold Approach. IEEE Transactions on Medical Imaging. 35 1972–1989PDF icon Technical Report (8.65 MB)