Publications

Export 1963 results:
[ Author(Asc)] Title Type Year
Filters: Filter is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
B. Savchynskyy, Schmidt, S., Kappes, J. H., and Schnörr, C., Efficient MRF Energy Minimization via Adaptive Diminishing Smoothing, in UAI 2012, 2012.PDF icon Technical Report (529 KB)
B. Savchynskyy, Discrete Graphical Models — An Optimization Perspective, Foundations and Trends® in Computer Graphics and Vision, vol. 11, pp. 160–429, 2019.
B. Savchynskyy, Kappes, J. H., Schmidt, S., and Schnörr, C., A Study of Nesterov's Scheme for Lagrangian Decomposition and MAP Labeling, in IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2011.
B. Savchynskyy, Kappes, J. Hendrik, Swoboda, P., and Schnörr, C., Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation, in NIPS, 2013.
B. Savchynskyy, Kappes, J. H., Schmidt, S., and Schnörr, C., A Study of Nesterov's Scheme for Lagrangian Decomposition and MAP Labeling, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), accepted as oral presentation, pp. 1817 - 1823, 2011.
B. Savchynskyy, Kappes, J. H., Swoboda, P., and Schnörr, C., Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation, in NIPS. Proceedings, 2013, pp. 1950-1958.
B. Savchynskyy and Schmidt, S., Getting Feasible Variable Estimates From Infeasible Ones: MRF Local Polytope Study, in Workshop on Inference for Probabilistic Graphical Models at ICCV. Proceedings, 2013.
B. Savchynskyy and Schmidt, S., Getting Feasible Variable Estimates From Infeasible Ones: MRF Local Polytope Study, arXiv:1210.4081, 2012.
B. Savchynskyy, Schmidt, S., Kappes, J. H., and Schnörr, C., Efficient MRF Energy Minimization via Adaptive Diminishing Smoothing, UAI. Proceedings, pp. 746-755, 2012.
F. Savarino and Schnörr, C., Continuous-Domain Assignment Flows, preprint: arXiv, 2019.
F. Savarino and Schnörr, C., A Variational Perspective on the Assignment Flow, in Proc. SSVM, 2019.
F. Savarino, Hühnerbein, R., Aström, F., Recknagel, J., and Schnörr, C., Numerical Integration of Riemannian Gradient Flows for Image Labeling, in Proc. SSVM, 2017, vol. 10302.
B. Saussen, Retention Time Domain Registration of Liquid Chromatography/Mass Spectrometry Data, University of Heidelberg, 2007.
P. Sauer, Pattern Recognition on Statistically Textured Surfaces, University of Heidelberg, 2008.
K. Saracoglu, Bildanalyse von M-FISH. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg, 2001.
F. E Sanmartin, Damrich, S., and Hamprecht, F. A., Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning, in Advances in Neural Information Processing Systems, 2019.
A. Sanakoyeu, Ma, P., Tschernezki, V., and Ommer, B., Improving Deep Metric Learning by Divide and Conquer, IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021.
A. Sanakoyeu, Bautista, M., and Ommer, B., Deep Unsupervised Learning of Visual Similarities, Pattern Recognition, vol. 78, 2018.PDF icon PDF (8.35 MB)
A. Sanakoyeu, Kotovenko, D., Lang, S., and Ommer, B., A Style-Aware Content Loss for Real-time HD Style Transfer, in Proceedings of the European Conference on Computer Vision (ECCV) (Oral), 2018.
A. Sanakoyeu, Tschernezki, V., Büchler, U., and Ommer, B., Divide and Conquer the Embedding Space for Metric Learning, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2019.
R
A. Ruiz, Deep k-segments: a generalization of k-means, Heidelberg University, 2021.
P. Ruhnau, Gütter, C., Putze, T., and Schnörr, C., A variational approach for particle tracking velocimetry, Meas. Science and Techn., vol. 16, pp. 1449-1458, 2005.
P. Ruhnau, Kohlberger, T., Nobach, H., and Schnörr, C., Variational Optical Flow Estimation for Particle Image Velocimetry, Proc. Lasermethoden in der Strömungsmeßtechnik. Deutsche Gesellschaft für Laser-Anemometrie GALA e.V., Karlsruhe, 2004.
P. Ruhnau, Kohlberger, T., Nobach, H., and Schnörr, C., Variational Optical Flow Estimation for Particle Image Velocimetry, Experiments in Fluids, vol. 38, pp. 21–32, 2005.
P. Ruhnau and Schnörr, C., Optical Stokes Flow Estimation: An Imaging-Based Control Approach, Exp. in Fluids, vol. 42, pp. 61–78, 2007.
P. Ruhnau, Stahl, A., and Schnörr, C., Variational Estimation of Experimental Fluid Flows with Physics-Based Spatio-Temporal Regularization, Measurement Science and Technology, vol. 18, pp. 755-763, 2007.
P. Ruhnau, Stahl, A., and Schnörr, C., On-Line Variational Estimation of Dynamical Fluid Flows with Physics-Based Spatio-Temporal Regularization, in Proc. DAGM 2006, 2006, vol. 375-388, pp. 375-388.
P. Ruhnau, Kohlberger, T., Nobach, H., and Schnörr, C., Variational Optical Flow Estimation for Particle Image Velocimetry, Experiments in Fluids, vol. 38, p. 21--32, 2005.PDF icon Technical Report (1.21 MB)
P. Ruhnau and Schnörr, C., Optical Stokes Flow Estimation: An Imaging-Based Control Approach, Exp.~in Fluids, vol. 42, p. 61--78, 2007.PDF icon Technical Report (1.54 MB)
P. Ruhnau, Stahl, A., and Schnörr, C., Variational Estimation of Experimental Fluid Flows with Physics-Based Spatio-Temporal Regularization, Measurement Science and Technology, vol. 18, pp. 755-763, 2007.PDF icon Technical Report (842.06 KB)
P. Ruhnau, Stahl, A., and Schnörr, C., On-Line Variational Estimation of Dynamical Fluid Flows with Physics-Based Spatio-Temporal Regularization, in Proc.~DAGM 2006, 2006, vol. 375-388, pp. 375-388.PDF icon Technical Report (902.47 KB)
E. Rudigier, Entwicklung eines automatisierten Bildverarbeitungssystems zur Auswertung unregelmäßiger Bildpunkte auf DNA-Chips, University of Heidelberg, 2000.
J. C. Rubio and Ommer, B., Regularizing Max-Margin Exemplars by Reconstruction and Generative Models, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, p. 4213--4221.PDF icon Technical Report (2.8 MB)
J. C. Rubio, Eigenstetter, A., and Ommer, B., Generative Regularization with Latent Topics for Discriminative Object Recognition, Pattern Recognition, vol. 48, p. 3871--3880, 2015.PDF icon Technical Report (5.49 MB)
L. A. Royer, Richmond, D. L., Rother, C., Andres, B., and Kainmueller, D., Convexity shape constraints for image segmentation, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016, vol. 2016-Decem, pp. 402–410.

Pages