M
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A.,
“The Mutex Watershed: Efficient, Parameter-Free Image Partitioning”,
ECCV. Proceedings. Springer, pp. 571-587, 2018.
S. Wolf, Pape, C., Bailoni, A., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A.,
“The Mutex Watershed: Efficient, Parameter-Free Image Partitioning”, in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11208 LNCS, pp. 571–587.
S. Wolf, Bailoni, A., Pape, C., Rahaman, N., Kreshuk, A., Köthe, U., and Hamprecht, F. A.,
“The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph Partitioning”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, pp. 3724-3738, 2020.
Technical Report (2.58 MB) M. Hanselmann, Köthe, U., Renard, B. Y., Kirchner, M., Heeren, R. M. A., and Hamprecht, F. A.,
“Multivariate Watershed Segmentation of Compositional Data”, in
Proceedings of the 15th International Conference on Discrete Geometry for Computer Imagery (DGCI), in press, 2009, vol. 5810, pp. 180-192.
Technical Report (1.25 MB) M. Kandemir, Klami, A., Gonen, M., Vetek, A., and Kaski, S.,
“Multi-task and multi-view learning of user state”,
Neurocomputing, vol. 139, pp. 97-106, 2014.
B. Ommer and Malik, J.,
“Multi-scale Object Detection by Clustering Lines”, in
Proceedings of the IEEE International Conference on Computer Vision, 2009, p. 484--491.
Technical Report (3.18 MB) B. Jähne, Jähne, B., Haußecker, H., and Geißler, P.,
“Multiresolutional signal representation”,
Handbook of Computer Vision and Applications, vol. 2. Academic Press, p. 67--90, 1999.
C. N. Straehle, Kandemir, M., Köthe, U., and Hamprecht, F. A.,
“Multiple instance learning with response-optimized random forests”, in
ICPR. Proceedings, 2014, pp. 3768 - 3773.
Technical Report (296.66 KB) G. Urban, Bendszus, M., Hamprecht, F. A., and Kleesiek, J.,
“Multi-modal Brain Tumor Segmentation using Deep Convolutional NeuralNetworks”, in
MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution, 2014, pp. 31-35.
B. Jähne, Herrmann, H., Jähne, B., and Haußecker, H.,
“Multimedia architectures”,
Handbook of Computer Vision and Applications, vol. 3: Systems and Applications. Academic Press, p. 31--52, 1999.
A. Bruhn, Weickert, J., Kohlberger, T., and Schnörr, C.,
“A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods”,
Int.~J.~Computer Vision, vol. 70, pp. 257-277, 2006.
Technical Report (447.65 KB) A. Bruhn, Weickert, J., Kohlberger, T., and Schnörr, C.,
“A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods”,
Int. J. Computer Vision, vol. 70, pp. 257-277, 2006.
Z. Lin, Erz, M., and Jähne, B.,
“Multi-frequency multi-sampling fluorescence lifetime imaging using a high-speed line-scan camera”, in
Optics, Photonics, and Digital Technologies for Multimedia Applications, 12--15 April 2010, Brussels, 2010, vol. 7723, p. 77231S.
B. Jähne, Brocke, M., Eisele, H., Hader, S., Hamprecht, F. A., Happold, W., Raisch, F., and Restle, J.,
“Multidimensionale Bildverarbeitung in der Produktion”,
QZ, vol. 47, p. 1154--1159, 2002.
J. Hendrik Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C.,
“Multicuts and Perturb & MAP for Probabilistic Graph Clustering”,
Journal of Mathematical Imaging and Vision, vol. 56, pp. 221–237, 2016.
J. H. Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C.,
“Multicuts and Perturb & MAP for Probabilistic Graph Clustering”,
J. Math. Imag. Vision, vol. 56, pp. 221–237, 2016.
T. Beier, Pape, C., Rahaman, N., Prange, T., Berg, S., Bock, D., Cardona, A., Knott, G. W., Plaza, S. M., Scheffer, L. K., Köthe, U., Kreshuk, A., and Hamprecht, F. A.,
“Multicut brings automated neurite segmentation closer to human performance”,
Nature Methods, vol. 14, no. 2, pp. 101-102, 2017.