Publications

Export 1965 results:
Author Title Type [ Year(Asc)]
Filters: Filter is   [Clear All Filters]
2019
Imle, A, Kumberger, P, Schnellbächer, N D, Fehr, J, Carillo-Bustamente, P, Ales, J, Schmidt, P, Ritter, C, Godinez, W J, Müller, B, Rohr, K, Hamprecht, F A, Schwarz, U S, Graw, F and Fackler, O T (2019). Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures. Nature Communications. 13;10(1)
Brachmann, E and Rother, C (2019). Expert sample consensus applied to camera re-localization. Proceedings of the IEEE International Conference on Computer Vision. 2019-Octob 7524–7533. http://arxiv.org/abs/1908.02484
Kirchhöfer, D M, Holst, G A, Wouters, F S, Hock, S and Jähne, B (2019). Extended noise equalisation for image compression in microscopical applications. tm - Technisches Messen. 86 422–432
Rathke, F and Schnörr, C (2019). Fast Multivariate Log-Concave Density Estimation. Comp. Statistics & Data Analysis. 140 41–58
Rathke, F and Schnörr, C (2019). Fast Multivariate Log-Concave Density Estimation. Comp. Statistics & Data Analysis. 140 41-58
Klein, A (2019). The Fetch Dependency of Small-Scale Air-Sea Interaction Processes at Low to Moderate Wind Speeds. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg, Heidelberg. Dissertation
Abu Alhaija, H, Mustikovela, S Karthik, Geiger, A and Rother, C (2019). Geometric Image Synthesis. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11366 LNCS 85–100. https://youtu.be/W2tFCz9xJoU
Zeilmann, A, Savarino, F, Petra, S and Schnörr, C (2019). Geometric Numerical Integration of the Assignment Flow. Inverse Problems. https://doi.org/10.1088/1361-6420/ab2772
Kostrykin, L, Schnörr, C and Rohr, K (2019). Globally Optimal Segmentation of Cell Nuclei in Fluoroscence Microscopy Images using Shape and Intensity Information. Medical Image Analysis. https://doi.org/10.1016/j.media.2019.101536
Ardizzone, L, Lüth, C, Kruse, J, Rother, C and Köthe, U (2019). Guided Image Generation with Conditional Invertible Neural Networks. http://arxiv.org/abs/1907.02392
Ardizzone, L, Lüth, C, Kruse, J, Rother, C and Köthe, U (2019). Guided Image Generation with Conditional Invertible Neural Networks. http://arxiv.org/abs/1907.02392
Berg, S, Kutra, D, Kroeger, T, Straehle, C N, Kausler, B X, Haubold, C, Schiegg, M, Ales, J, Beier, T, Rudy, M, Eren, K, Cervantes, J I, Xu, B, Beuttenmüller, F, Wolny, A, Zhang, C, Köthe, U, Hamprecht, F A and Kreshuk, A (2019). ilastik: interactive machine learning for (bio)image analysis. Nature Methods. 16 1226-1232
Remme, R (2019). Instance Segmentation Via Associative Pixel Embeddings. Heidelberg University
Friman, S I and Jähne, B (2019). Investigating SO2 transfer across the air–water interface via LIF. Exp. Fluids. 60 65
Hosseini Jafari, O, Mustikovela, S Karthik, Pertsch, K, Brachmann, E and Rother, C (2019). iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11363 LNCS 477–492
Hanslovsky, P (2019). Isotropic Reconstruction of Neural Morphology from Large Non-Isotropic 3D Electron MIcroscopy. Heidelberg University
Hühnerbein, R, Savarino, F, Petra, S and Schnörr, C (2019). Learning Adaptive Regularization for Image Labeling Using Geometric Assignment. Proc. SSVM. Springer
Hühnerbein, R, Savarino, F, Petra, S and Schnörr, C (2019). Learning Adaptive Regularization for Image Labeling Using Geometric Assignment. preprint: arXiv. https://arxiv.org/abs/1910.09976
Leistner, T, Schilling, H, Mackowiak, R, Gumhold, S and Rother, C (2019). Learning to Think Outside the Box: Wide-Baseline Light Field Depth Estimation with EPI-Shift. Proceedings - 2019 International Conference on 3D Vision, 3DV 2019. 249–257. http://arxiv.org/abs/1909.09059 http://dx.doi.org/10.1109/3DV.2019.00036PDF icon PDF (8.94 MB)
Kirschbaum, E, Haußmann, M, Wolf, S, Sonntag, H, Schneider, J, Elzoheiry, S, Kann, O, Durstewitz, D and Hamprecht, F A (2019). LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos. ICLR. Proceedings
Li, W, Hosseini Jafari, O and Rother, C (2019). Localizing Common Objects Using Common Component Activation Map
Peter, S (2019). Machine learning under test-time budget constraints. Heidelberg University
Nagel, L, Krall, K E and Jähne, B (2019). Measurement of air-sea gas transfer velocities in the Baltic Sea. Ocean Science. 15 235–247
Bengio, Y, Deleu, T, Rahaman, N, Ke, R, Lachapelle, S, Bilaniuk, O, Goyal, A and Pal, C (2019). A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms. arXiv preprint arXiv:1901.10912PDF icon Technical Report (871.59 KB)
Brattoli, B, Roth, K and Ommer, B (2019). MIC: Mining Interclass Characteristics for Improved Metric Learning. Proceedings of the Intl. Conf. on Computer Vision (ICCV)
Brachmann, E and Rother, C (2019). Neural-guided RANSAC: Learning where to sample model hypotheses. Proceedings of the IEEE International Conference on Computer Vision. 2019-Octob 4321–4330. http://arxiv.org/abs/1905.04132PDF icon PDF (8.02 MB)
Ravindran, A (2019). Novel Deep Learning-Based Instance Segmentation Using Mutex Watershed For Microscopy Cell Images. Heidelberg University
Kirschbaum, E (2019). Novel Machine Learning Approaches for Neurophysiological Data Analysis. Heidelberg University
Adler, T J, Ayala, L, Ardizzone, L, Kenngott, H G, Vemuri, A, Müller-Stich, B P, Rother, C, Köthe, U and Maier-Hein, L (2019). Out of Distribution Detection for Intra-operative Functional Imaging. MICCAI UNSURE Workshop 2019. 11840 LNCS 75–82PDF icon PDF (3.1 MB)
Snajder, R (2019). Pipeline Für Die Automatisierte Objektsegmentierung Von 3D Lightshet Mikroskopiebildern. Heidelberg University
E Sanmartin, F, Damrich, S and Hamprecht, F A (2019). Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning. Advances in Neural Information Processing Systems
Bhowmik, A, Gumhold, S, Rother, C and Brachmann, E (2019). Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task. http://arxiv.org/abs/1912.00623
Li, J (2019). Robust Single Object Tracking Via Fully Convolutional Siamese Networks. Heidelberg University
Haußmann, M, Hamprecht, F A and Kandemir, M (2019). Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation. UAI. Proceedings. 563-573PDF icon Technical Report (1.04 MB)
Zisler, M, Zern, A, Petra, S and Schnörr, C (2019). Self-Assignment Flows for Unsupervised Data Labeling on Graphs. preprint: arXiv. https://arxiv.org/abs/1911.03472

Pages