Publications
2020
Kluger, F, Brachmann, E, Ackermann, H, Rother, C, Yang, M Ying and Rosenhahn, B (2020).
CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus.
CVPR 2020.
http://arxiv.org/abs/2001.02643 PDF (9.95 MB) Haller, S, Prakash, M, Hutschenreiter, L, Pietzsch, T, Rother, C, Jug, F, Swoboda, P and Savchynskyy, B (2020).
A Primal-Dual Solver for Large-Scale Tracking-by-Assignment.
AISTATS 2020 PDF (1.04 MB) 2019
Mackowiak, R, Lenz, P, Ghori, O, Diego, F, Lange, O and Rother, C (2019).
CEREALS - Cost-Effective REgion-based Active Learning for Semantic Segmentation.
British Machine Vision Conference 2018, BMVC 2018 Li, W, Hosseini Jafari, O and Rother, C (2019).
Deep Object Co-segmentation.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
11363 LNCS 638–653
Abu Alhaija, H, Mustikovela, S Karthik, Geiger, A and Rother, C (2019).
Geometric Image Synthesis.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
11366 LNCS 85–100.
https://youtu.be/W2tFCz9xJoU Hosseini Jafari, O, Mustikovela, S Karthik, Pertsch, K, Brachmann, E and Rother, C (2019).
iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
11363 LNCS 477–492
Brachmann, E and Rother, C (2019).
Neural-guided RANSAC: Learning where to sample model hypotheses.
Proceedings of the IEEE International Conference on Computer Vision.
2019-Octob 4321–4330.
http://arxiv.org/abs/1905.04132 PDF (8.02 MB) Adler, T J, Ayala, L, Ardizzone, L, Kenngott, H G, Vemuri, A, Müller-Stich, B P, Rother, C, Köthe, U and Maier-Hein, L (2019).
Out of Distribution Detection for Intra-operative Functional Imaging.
MICCAI UNSURE Workshop 2019.
11840 LNCS 75–82
PDF (3.1 MB) 2018
Hodaň, T, Michel, F, Brachmann, E, Kehl, W, Buch, A Glent, Kraft, D, Drost, B, Vidal, J, Ihrke, S, Zabulis, X, Sahin, C, Manhardt, F, Tombari, F, Kim, T Kyun, Matas, J and Rother, C (2018).
BOP: Benchmark for 6D object pose estimation.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
11214 LNCS 19–35.
http://arxiv.org/abs/1808.08319 Arnab, A, Zheng, S, Jayasumana, S, Romera-paredes, B, Kirillov, A, Savchynskyy, B, Rother, C, Kahl, F and Torr, P (2018).
Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation.
Cvpr.
XX 1–15.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.8889&rep=rep1&type=pdf%0Ahttp://dx.doi.org/10.1109/CVPR.2012.6248050 Tourani, S, Shekhovtsov, A, Rother, C and Savchynskyy, B (2018).
MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical Models.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
11208 LNCS 264–281
Schilling, H, Diebold, M, Rother, C and Jähne, B (2018).
Trust your Model: Light Field Depth Estimation with Inline Occlusion Handling.
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 4530–4538
2017
Behl, A, Hosseini Jafari, O, Mustikovela, S Karthik, Abu Alhaija, H, Rother, C and Geiger, A (2017).
Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?.
Proceedings of the IEEE International Conference on Computer Vision.
2017-Octob 2593–2602
Behl, A, Hosseini Jafari, O, Mustikovela, S Karthik, Abu Alhaija, H, Rother, C and Geiger, A (2017).
Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?.
Proceedings of the IEEE International Conference on Computer Vision.
2017-Octob 2593–2602
Pages