Publications

Export 223 results:
Author Title [ Type(Desc)] Year
Filters: Author is Christoph Schnörr  [Clear All Filters]
Conference Paper
Lellmann, J, Lenzen, F and Schnörr, C (2011). Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. Energy Min. Meth. Comp. Vis. Patt. Recogn. Springer. 132-146
Lellmann, J, Lenzen, F and Schnörr, C (2011). Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. Energy Min. Meth. Comp. Vis. Patt. Recogn. Springer. 6819 132--146PDF icon Technical Report (1 MB)
Lellmann, J, Lenzen, F and Schnörr, C (2011). Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. Energy Min. Meth. Comp. Vis. Patt. Recogn. Springer. 6819 132–146
Rathke, F, Schmidt, S and Schnörr, C (2011). Order Preserving and Shape Prior Constrained Intra-Retinal Layer Segmentation in Optical Coherence Tomography. MICCAI. Springer. 6893 370–377
Rathke, F, Schmidt, S and Schnörr, C (2011). Order Preserving and Shape Prior Constrained Intra-Retinal Layer Segmentation in Optical Coherence Tomography. MICCAI. Springer. 6893 370--377PDF icon Technical Report (1.12 MB)
Rathke, F, Schmidt, S and Schnörr, C (2011). Order Preserving and Shape Prior Constrained Intra-Retinal Layer Segmentation in Optical Coherence Tomography. MICCAI 2011, Proceedings. Springer. 6893 370-377
Swoboda, P, Savchynskyy, B, Kappes, J H and Schnörr, C (2014). Partial Optimality by Pruning for MAP-inference with General Graphical Models. IEEE Conference on Computer Vision and Pattern Recognition 2014
Swoboda, P, Savchynskyy, B, Kappes, J H and Schnörr, C (2014). Partial Optimality by Pruning for MAP-inference with General Graphical Models. IEEE Conference on Computer Vision and Pattern Recognition 2014PDF icon Technical Report (703.34 KB)
Swoboda, P, Savchynskyy, B, Kappes, J H and Schnörr, C (2013). Partial Optimality via Iterative Pruning for the Potts Model. Scale Space and Variational Methods (SSVM 2013)PDF icon Technical Report (159.71 KB)
Swoboda, P, Savchynskyy, B, Kappes, J H and Schnörr, C (2013). Partial Optimality via Iterative Pruning for the Potts Model. Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision SSVM. 477-488
Swoboda, P, Savchynskyy, B, Kappes, J H and Schnörr, C (2013). Partial Optimality via Iterative Pruning for the Potts Model. Scale Space and Variational Methods (SSVM 2013)
Swoboda, P, Savchynskyy, B, Kappes, J H and Schnörr, C (2013). Persistency by Pruning for General Graphical Models. submitted to NIPS 2013
Vlasenko, A and Schnörr, C (2008). Physically Consistent Variational Denoising of Image Fluid Flow Estimates. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 406--415PDF icon Technical Report (1.6 MB)
Kappes, J H, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2015). Probabilistic Correlation Clustering and Image Partitioning Using Perturbed Multicuts. Proc.~SSVM. SpringerPDF icon Technical Report (1.1 MB)
Kappes, J Hendrik, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2015). Probabilistic correlation clustering and image partitioning using perturbed Multicuts. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 9087 231–242
Bruhn, A, Weickert, J, Feddern, C, Kohlberger, T and Schnörr, C (2003). Real-Time Optic Flow Computation with Variational Methods. Proc. Computer Analysis of Images and Patterns (CAIP'03). Springer. 2756 222-229
Berger, J, Neufeld, A, Becker, F, Lenzen, F and Schnörr, C (2015). Second Order Minimum Energy Filtering on SE(3) with Nonlinear Measurement Equations. Scale Space and Variational Methods in Computer Vision (SSVM 2015)
Berger, J, Neufeld, A, Becker, F, Lenzen, F and Schnörr, C (2015). Second Order Minimum Energy Filtering on SE(3) with Nonlinear Measurement Equations. Scale Space and Variational Methods in Computer Vision (SSVM 2015). Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-18461-6_32PDF icon Technical Report (364.01 KB)
Andres, B, Hamprecht, F A and Garbe, C S (2007). Selection of Local Optical Flow Models by Means of Residual Analysis. Pattern Recognition. Springer. 4713 72-81PDF icon Technical Report (229.64 KB)
Andres, B, Garbe, C S, Schnörr, C and Jähne, B (2007). Selection of local optical flow models by means of residual analysis. Proceedings of the 29th DAGM Symposium on Pattern Recognition. Springer. 72--81
Görlitz, L, Menze, B H, Weber, M - A and Kelm, B Michael (2007). Semi-Supervised Tumor Detection in MRSI With Discriminative Random Fields. Pattern Recognition. Springer. 4713 224-233PDF icon Technical Report (872.46 KB)
Petra, S, Schröder, A, Wieneke, B and Schnörr, C (2008). On Sparsity Maximization in Tomographic Particle Image Reconstruction. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 294--303PDF icon Technical Report (1014.71 KB)
Lauer, F and Schnörr, C (2009). Spectral Clustering of Linear Subspaces for Motion Segmentation. Proc.~IEEE Int.~Conf.~Computer Vision (ICCV'09)PDF icon Technical Report (1.12 MB)
Lauer, F and Schnörr, C (2009). Spectral Clustering of Linear Subspaces for Motion Segmentation. Proceedings of the IEEE Conference on Computer Vision (ICCV 09) Kyoto, Japan, in press. 678-685
Schmidt, S, Kappes, J H, Bergtholdt, M, Pekar, V, Dries, S, Bystrov, D and Schnörr, C (2007). Spine Detection and Labeling Using a Parts-Based Graphical Model. Proc. 20th International Conference on Information Processing in Medical Imaging (IPMI 2007). Springer. 4584 122-133PDF icon Technical Report (1.46 MB)
Savchynskyy, B, Kappes, J H, Schmidt, S and Schnörr, C (2011). A Study of Nesterov's Scheme for Lagrangian Decomposition and MAP Labeling. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon Technical Report (408.99 KB)
Yuan, J, Schnörr, C, Steidl, G and Becker, F (2005). A Study of Non-Smooth Convex Flow Decomposition. Proc. Variational, Geometric and Level Set Methods in Computer Vision. Springer. 3752 1–12
Kappes, J H, Petra, S, Schnörr, C and Zisler, M (2015). TomoGC: Binary Tomography by Constrained Graph Cuts. Proc.~GCPRPDF icon Technical Report (2.46 MB)
Yuan, J, Schnörr, C and Steidl, G (2009). Total-Variation Based Piecewise Affine Regularization. Scale Space and Variational Methods in Computer Vision (SSVM 2009). Springer. 5567 552-564
Yuan, J, Schnörr, C and Steidl, G (2009). Total-Variation Based Piecewise Affine Regularization. Scale Space and Variational Methods in Computer Vision (SSVM 2009). Springer. 5567 552-564PDF icon Technical Report (478.04 KB)
Kappes, J H, Speth, M, Reinelt, G and Schnörr, C (2013). Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization. CVPRPDF icon Technical Report (623.84 KB)
Kappes, J H, Speth, M, Reinelt, G and Schnörr, C (2013). Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization. CVPR
Cremers, D, Sochen, N and Schnörr, C (2003). Towards Recognition-Based Variational Segmentation Using Shape Priors and Dynamic Labeling. Scale Space Methods in Computer Vision. Springer. 2695 388--400PDF icon Technical Report (451.82 KB)
Cremers, D, Sochen, N and Schnörr, C (2003). Towards Recognition-Based Variational Segmentation Using Shape Priors and Dynamic Labeling. Scale Space Methods in Computer Vision. Springer. 2695 388–400
Becker, F, Wieneke, B, Yuan, J and Schnörr, C (2008). A Variational Approach to Adaptive Correlation for Motion Estimation in Particle Image Velocimetry". Pattern Recognition -- 30th DAGM Symposium. 5096 335-344

Pages