Publications

Export 1965 results:
Author Title [ Type(Desc)] Year
Conference Paper
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Lellmann, J., Komodakis, N., and Rother, C., A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problem, in CVPR, 2013.PDF icon Technical Report (1.35 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Sungwoong, K., Kausler, B. X., Lellmann, J., Komodakis, N., and Rother, C., A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems, in CVPR 2013. Proceedings, 2013.PDF icon Technical Report (1.35 MB)
F. O. Kaster, Weber, M. - A., and Hamprecht, F. A., Comparative Validation of Graphical Models for Learning Tumor Segmentations from Noisy Manual Annotations, in LNCS, 2011, vol. LNCS 6533, pp. 74-85.PDF icon Technical Report (544.56 KB)
V. Kolmogorov and Rother, C., Comparison of energy minimization algorithms for highly connected graphs, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2006, vol. 3952 LNCS, pp. 1–15.
V. Kolmogorov and Rother, C., Comparison of energy minimization algorithms for highly connected graphs, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2006, vol. 3952 LNCS, pp. 1–15.
P. Snoeij, van Halsema, D., Oost, W. A., Calkoen, C. J., Vogelzang, J., and Jähne, B., Comparison of microwave backscatter measurements and small-scale surface wave measurements made from the Dutch ocean research tower 'Noordwijk', in Proceedings IGARSS '91, 1991, vol. 3, p. 1289--1292.
A. Haja, Abraham, S., and Jähne, B., A Comparison of Region Detectors for Tracking, in Pattern Recognition, Proceedings 30th DAGM Symposium, Munich, Germany, June 2008, 2008, vol. 5096, p. 112--121.
D. van Halsema, Calkoen, C. J., Oost, W. A., Snoeij, P., Vogelzang, J., and Jähne, B., Comparisons of backscattering calculations with measurements made in a large wind/wave flume, in Proc. IGARSS'92, 1992, vol. 2, p. 1451--1453.
D. van Halsema, Calkoen, C. J., Oost, W. A., Snoeij, P., and Jähne, B., Comparisons of X-band Radar Backscatter Measurements with Area extended wave slop measurements made in a large Wind/Wave Tank, in Proc. IGARSS'89, 1989, vol. 5, p. 2997--3001.
B. Ommer and Buhmann, J. M., Compositional Object Recognition, Segmentation, and Tracking in Video, in Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, 2007, vol. 4679, p. 318--333.PDF icon Technical Report (2.78 MB)
B. Ommer and Buhmann, J. M., A Compositionality Architecture for Perceptual Feature Grouping, in Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, 2003, vol. 2683, p. 275--290.PDF icon Technical Report (2.89 MB)
F. Hering, Haußecker, H., Dieter, J., Netzsch, T., and Jähne, B., A comprehensive study of algorithms for multidimensional flow field diagnostics, in Proc. Optical 3D Measurement Techniques IV, Zurich, Sept. 29 - Oct. 2, 1997, 1997, p. 436--443.
R. Dalitz, Petra, S., and Schnörr, C., Compressed Motion Sensing, in Proc. SSVM, 2017, vol. 10302.
C. Schnörr, Computation of Discontinuous Optical Flow by Domain Decomposition and Shape Optimization, in Proc. British Machine Vision Conference, Oxford/UK, 1990, pp. 109–114.
S. V. E. Keränen, DePace, A., Hendriks, C. L. Luengo, Fowlkes, C., Arbelaez, P., Ommer, B., Brox, T., Henriquez, C., Wunderlich, Z., Eckenrode, K., Fischer, B., Hammonds, A., and Celniker, S. E., Computational Analysis of Quantitative Changes in Gene Expression and Embryo Morphology between Species, in Evolution-The Molecular Landscape, 2009.
M. Wulf, Stiehl, H. S., and Schnörr, C., On the computational rôle of the primate retina, in Proc. 2nd ICSC Symposium on Neural Computation (NC 2000), Berlin, Germany, 2000.
F. Kluger, Brachmann, E., Ackermann, H., Rother, C., Yang, M. Ying, and Rosenhahn, B., CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus, in CVPR 2020, 2020.PDF icon PDF (9.95 MB)
M. Schiegg, Hanslovsky, P., Kausler, B. X., Hufnagel, L., and Hamprecht, F. A., Conservation Tracking, in ICCV 2013. Proceedings, 2013, p. 2928--2935.PDF icon Technical Report (5.22 MB)
D. Kotovenko, Sanakoyeu, A., Lang, S., and Ommer, B., Content and Style Disentanglement for Artistic Style Transfer, in Proceedings of the Intl. Conf. on Computer Vision (ICCV), 2019.
K. Fundana, Heyden, A., Gosch, C., and Schnörr, C., Continuous Graph Cuts for Prior-Based Object Segmentation, in 19th Int.~Conf.~Patt.~Recog.~(ICPR), 2008, p. 1--4.PDF icon Technical Report (414.89 KB)
F. Lauer, Bloch, G., and Vidal, R., A Continuous Optimization Framework for Hybrid System Identification, in submitted to Automatica, 2009.
J. Schlecht and Ommer, B., Contour-based Object Detection, in BMVC, 2011, p. 1--9.PDF icon Technical Report (2.62 MB)
M. Heiler and Schnörr, C., Controlling Sparseness in Non-negative Tensor Factorization, in Computer Vision -- ECCV 2006, 2006, vol. 3951, pp. 56-67.PDF icon Technical Report (568.86 KB)
J. Yuan, Steidl, G., and Schnörr, C., Convex Hodge Decomposition of Image Flows, in Pattern Recognition -- 30th DAGM Symposium, 2008, vol. 5096, p. 416--425.PDF icon Technical Report (290.72 KB)
J. Lellmann, Kappes, J. H., Yuan, J., Becker, F., and Schnörr, C., Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation, in Scale Space and Variational Methods in Computer Vision (SSVM 2009), 2009, vol. 5567, pp. 150-162.PDF icon Technical Report (1.75 MB)
J. Lellmann, Kappes, J. H., Yuan, J., Becker, F., Schnörr, C., Mórken, K., and Lysaker, M., Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation, in Scale Space and Variational Methods in Computer Vision (SSVM 2009), 2009, vol. 5567, pp. 150-162.
J. Lellmann, Becker, F., and Schnörr, C., Convex Optimization for Multi-Class Image Labeling with a Novel Family of Total Variation Based Regularizers, in Proceedings of the IEEE Conference on Computer Vision (ICCV 09) Kyoto, Japan, 2009, pp. 646-653.
J. Lellmann, Becker, F., and Schnörr, C., Convex Optimization for Multi-Class Image Labeling with a Novel Family of Total Variation Based Regularizers, in IEEE International Conference on Computer Vision (ICCV), 2009, p. 646 -- 653.PDF icon Technical Report (930.18 KB)
F. Silvestri, Reinelt, G., and Schnörr, C., A Convex Relaxation Approach to the Affine Subspace Clustering Problem, in Proc.~GCPR, 2015.PDF icon Technical Report (878.63 KB)
J. Keuchel, Schellewald, C., Cremers, D., and Schnörr, C., Convex Relaxations for Binary Image Partitioning and Perceptual Grouping, in Mustererkennung 2001, Munich, Germany, 2001, vol. 2191, pp. 353–360.
J. Yuan, Schnörr, C., Kohlberger, T., and Ruhnau, P., Convex Set-Based Estimation of Image Flows, in ICPR 2004 – 17th Int. Conf. on Pattern Recognition, Cambridge, UK, 2004, vol. 1, pp. 124-127.
C. Schnörr, Convex Variational Segmentation of Multi-Channel Images, in Proc. 12th Int. Conf. on Analysis and Optimization of Systems: Images, Wavelets and PDE's, Paris, 1996, vol. 219.
L. A. Royer, Richmond, D. L., Rother, C., Andres, B., and Kainmueller, D., Convexity shape constraints for image segmentation, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016, vol. 2016-Decem, pp. 402–410.
C. Rother, Kolmogorov, V., Minka, T., and Blake, A., Cosegmentation of image pairs by histogram matching - Incorporating a global constraint into MRFs, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, vol. 1, pp. 994–1000.
S. Vicente, Kolmogorov, V., and Rother, C., Cosegmentation revisited: Models and optimization, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, vol. 6312 LNCS, pp. 465–479.

Pages