Export 36 results:
Author Title Type [ Year(Asc)]
Filters: Drupal User is mipsec
Sitenko, D, Boll, B and Schnörr, C (2021). Assignment Flow For Order-Constrained OCT Segmentation. Int J Computer Vision. 129
Gonzalez-Alvarado, D, Zeilmann, A and Schnörr, C (2021). Assignment Flows and Nonlocal PDEs on Graphs. GCPR, in press
Sitenko, D, Boll, B and Schnörr, C (2021). Assignment Flows and Nonlocal PDEs on Graphs. GCPR, in press
Haußmann, (2021). Bayesian Neural Networks for Probabilistic Machine Learning. Heidelberg University
Ruiz, A (2021). Deep K-Segments: A Generalization Of K-Means. Heidelberg University
Bailoni, A (2021). Deep Learning for Graph-Based Image Instance Segmentation. Heidelberg University
Vijayan, A, Tofanelli, R, Strauss, S, Cerrone, L, Wolny, A, Strohmeier, J, Kreshuk, A, Hamprecht, F A, Smith, R S and Schneitz, K (2021). A Digital 3D Reference Atlas Reveals Cellular Growth Patterns Shaping the Arabidopsis Ovule. eLife
Fita, E, Damrich, S and Hamprecht, F A (2021). Directed Probabilistic Watershed. NeurIPS. Proceedings. 34PDF icon Technical Report (957.78 KB)
Kandemir, M, Agkül, A, Haußmann, M and Ünal, G (2021). Evidential Turing Processes. arXiv preprint. https://arxiv.org/abs/2106.01216
Jenner, E, Fita, E and Hamprecht, F A (2021). Extensions of Karger's Algorithm: Why They Fail in Theory and How They Are Useful in Practice. ICCV. Proceedings. 4602-4611PDF icon Technical Report (1.1 MB)
Schütz, L M, Louveaux, M, Vilches-Barro, A, Bouziri, S, Cerrone, L, Wolny, A, Kreshuk, A, Hamprecht, F A and Maizel, A (2021). Integration of Cell Growth and Asymmetric Division during Lateral Root Initiation in Arabidopsis thaliana. Plant and Cell Physiology. 62 1269-1279
Andersson, A, Diego, F, Hamprecht, F A and Wählby, C (2021). Istdeco: In Situ Transcriptomics Decoding By Deconvolution. bioRxiv
Haußmann, M, Gerwinn, S, Look, A, Rakitsch, B and Kandemir, M (2021). Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes. International Conference on Artificial Intelligence and Statistics . PMLR 130 478-486
Pape, C, Remme, R, Wolny, A, Olberg, S, Wolf, S, Cerrone, L, Cortese, M, Klaus, S, Lucic, B, Ullrich, S, Anders-Össwein, M, Wolf, S, Cerikan, B, Neufeldt, C J, Ganter, M, Schnitzler, P, Merle, U, Lusic, M, Boulant, S, Stanifer, M, Bartenschlager, R, Hamprecht, F A, Kreshuk, A, Tischer, C, Kräusslich, H - G, Müller, B and Laketa, V (2021). Microscopy-based assay for semi-quantitative detection of SARS-CoV-2 specific antibodies in human sera. BioEssays. 43
Walter, F C, Damrich, S and Hamprecht, F A (2021). MultiStar: Instance Segmentation of Overlapping Objects with Star-Convex Polygons. ISBI. 295-298PDF icon Technical Report (1.83 MB)
Pape, C (2021). Scalable Instance Segmentation for Microscopy. Heidelberg University
Arlt, H, Sui, X, Folger, B, Adams, C, Chen, X, Remme, R, Hamprecht, F A, DiMaio, F, Liao, M, Goodman, J M, Farese, R V and Walther, T C (2021). Seipin forms a flexible cage at lipid droplet formation sites. bioRxiv
Damrich, S and Hamprecht, F H (2021). UMAP does not reproduce high-dimensional similarities due to negative sampling. arXiv preprint
Damrich, S and Hamprecht, F A (2021). On UMAP's True Loss Function. NeurIPS. Proceedings. 34PDF icon Technical Report (1.87 MB)
Bellagente, M, Haußmann, M, Luchmann, M and Plehn, T (2021). Understanding Event-Generation Networks via Uncertainties. arXiv preprint. https://arxiv.org/abs/2104.04543v1
Wolny, A, Cerrone, L, Vijayan, A, Tofanelli, R, Vilches-Barro, A, Louveaux, M, Wenzel, C, Strauss, S, Wilson-Sanchez, D, Lymbouridou, R, Steigleder, S S, Pape, C, Bailoni, A, Duran-Nebreda, S, Bassel, G W, Lohmann, J U, Tsiantis, M, Hamprecht, F A, Schneitz, K, Maizel, A and Kreshuk, A (2020). Accurate and Versatile 3D Segmentation of Plant Tissues at Cellular Resolution. eLife. 9
Haußmann, M, Gerwinn, S and Kandemir, M (2020). Bayesian Evidential Deep Learning with PAC Regularization . 3rd Symposium on Advances in Approximate Bayesian Inference
Kirschbaum, E, Bailoni, A and Hamprecht, F A (2020). DISCo: Deep Learning, Instance Segmentation, and Correlations for Cell Segmentation in Calcium Imaging. MICCAI. Proceedings. 151-162
Wolf, S, Hamprecht, F A and Funke, J (2020). Inpainting Networks Learn to Separate Cells in Microscopy Images. BMCVPDF icon Technical Report (357.23 KB)
Wolf, S, Hamprecht, F A and Funke, J (2020). Instance Separation Emerges from Inpainting. arXiv preprint arXiv:2003.00891
Wolf, S (2020). Machine Learning for Instance Segmentation. Heidelberg University
Bailoni, A, Pape, C, Wolf, S, Kreshuk, A and Hamprecht, F A (2020). Proposal-Free Volumetric Instance Segmentation from Latent Single-Instance Masks. GCPR. Springer. 12544 331-344
Wolf, S, Li, Y, Pape, C, Bailoni, A, Kreshuk, A and Hamprecht, F A (2020). The Semantic Mutex Watershed for Efficient Bottom-Up Semantic Instance Segmentation. ECCV. Proceedings. 208-224