Publications

Export 1965 results:
Author [ Title(Desc)] Type Year
Filters: Filter is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Cerrone, L (2018). Deep End-To-End Learning Of A Diffusion Process For Seeded Image Segmentation. Heidelberg University
Kandemir, M and Hamprecht, F A (2015). The Deep Feed-Forward Gaussian Process: An Effective Generalization to Covariance Priors. NIPS. Proceedings. 44 145-159PDF icon Supplementary Material (223.39 KB)PDF icon Technical Report (2.58 MB)
Ruiz, A (2021). Deep K-Segments: A Generalization Of K-Means. Heidelberg University
Schmidt, P (2016). Deep Learning For Bioimage Analysis. University of Heidelberg
Balles, L (2016). Deep Learning For Diabetic Retinopathy Diagnostics. University of Heidelberg
Bailoni, A (2021). Deep Learning for Graph-Based Image Instance Segmentation. Heidelberg University
Dencker, T, Klinkisch, P, Maul, S M and Ommer, B (2020). Deep learning of cuneiform sign detection with weak supervision using transliteration alignment. PLoS ONE. 15. https://hci.iwr.uni-heidelberg.de/compvis/projects/cuneiform
Kleesiek, J, Urban, G, Hubert, A, Schwarz, D, Maier-Hein, K, Bendszus, M and Biller, A (2016). Deep MRI brain extraction: A 3D convolutional neural network for skull stripping.. NeuroImage. 129 460-469PDF icon Technical Report (1.14 MB)
Li, W, Hosseini Jafari, O and Rother, C (2019). Deep Object Co-segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11363 LNCS 638–653
Ufer, N and Ommer, B (2017). Deep Semantic Feature Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon article (8.88 MB)
Sanakoyeu, A, Bautista, M and Ommer, B (2018). Deep Unsupervised Learning of Visual Similarities. Pattern Recognition. 78. https://authors.elsevier.com/a/1WXUt77nKSb25 PDF icon PDF (8.35 MB)
Bautista, M, Sanakoyeu, A and Ommer, B (2017). Deep Unsupervised Similarity Learning using Partially Ordered Sets. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon deep_unsupervised_similarity_learning_cvpr_2017_paper.pdf (905.82 KB)
Bollweg, S, Haußmann, M, Kasieczka, G, Luchmann, M, Plehn, T and Thompson, J (2020). Deep-Learning Jets with Uncertainties and More. SciPost Phys. 8. https://scipost.org/10.21468/SciPostPhys.8.1.006PDF icon Technical Report (1.65 MB)
van Vliet, P, Hering, F, Jähne, B and Jähne, B (1995). Delft Hydraulics Large Wind-Wave Flume. Air-Water Gas Transfer---Selected Papers from the Third International Symposium of Air--Water Gas Transfer in Heidelberg. AEON. 499--502
Lou, X, Kaster, F O, Lindner, M, Kausler, B X, Köthe, U, Höckendorf, B, Wittbrodt, J, Jänicke, H and Hamprecht, F A (2011). DELTR: Digital Embryo Lineage Tree Reconstructor. Eighth IEEE International Symposium on Biomedical Imaging (ISBI). Proceedings. 1557-1560PDF icon Technical Report (1.44 MB)
Frank, M, Plaue, M and Hamprecht, F A (2009). Denoising of Continuous-Wave Time-Of-Flight Depth Images Using Confidence Measures. Optical Engineering. 48, 077003PDF icon Technical Report (2.5 MB)
Lenzen, F, Kim, K I, Schäfer, H, Nair, R, Meister, S, Becker, F and Garbe, C S (2013). Denoising Strategies for Time-of-Flight Data. Time-of-Flight Imaging: Algorithms, Sensors and Applications. Springer. 8200 24-25
Lenzen, F, Kim, K In, Schäfer, H, Nair, R, Meister, S, Becker, F and Garbe, C S (2013). Denoising Strategies for Time-of-Flight Data. Time-of-Flight and Depth Imaging: Sensors, Algorithms, and Applications. Springer. 8200 25-45PDF icon Technical Report (961.62 KB)
Lenzen, F, Schäfer, H and Garbe, C S (2011). Denoising Time-Of-Flight Data with Adaptive Total Variation. Proceedings ISVC. Springer. 337-346
Spies, H and Garbe, C S (2002). Dense parameter fields from total least squares. Proceedings of the 24th DAGM Symposium on Pattern Recognition. Springer. LNCS 2449 379--386
Spies, H, Jähne, B and Barron, J L (2000). Dense range flow from depth and intensity data. ICPR. 131--134
Zheng, S, Cheng, M Ming, Warrell, J, Sturgess, P, Vineet, V, Rother, C and Torr, P H S (2014). Dense semantic image segmentation with objects and attributes. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 3214–3221. http://www.robots.ox.ac.uk/˜tvg/http://tu-dresden.de/inf/cvld
Spies, H, Kirchgeßner, N, Scharr, H and Jähne, B (2000). Dense structure estimation via regularised optical flow. VMV 2000. Aka GmbH, Berlin. 57--64
Schäfer, H, Lenzen, F and Garbe, C S (2013). Depth and Intensity Based Edge Detection in Time-of-Flight Images. 3DV-Conference, 2013 International Conference on. 111-118PDF icon Technical Report (1.85 MB)
Schäfer, H, Lenzen, F and Garbe, C S (2013). Depth and Intensity Based Edge Detection in Time-of-Flight Images. 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), 2013 International Conference on. IEEE. 111-118
Jähne, B and Geißler, P (1994). Depth from focus with one image. Proc. Conference on Computer Vision and Pattern Recognition (CVPR '94), Seattle, 20.-23. June 1994. 713--717
Hornáček, M, Rhemann, C, Gelautz, M and Rother, C (2013). Depth super resolution by rigid body self-similarity in 3D. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1123–1130
Geißler, (1993). Depth-From-Focus Bildanalyseverfahren Zur Messung Der Konzentration Und Größe Von Blasen Und Mikroorganismen. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ.\ Heidelberg
Geißler, P, Scholz, T, Jähne, B, Haußecker, H and Geißler, P (1999). Depth-from-focus for the measurement of size distributions of small particles. Handbook of Computer Vision and Applications. Academic Press. 3: Systems and Applications 623-646
Geißler, P, Scholz, T, Jähne, B, Schmidt, C, Suhr, H and Wehnert, G (1995). Depth-from-Focus Verfahren zur absoluten Größen- und Konzentrationsbestimmung kleiner Teilchen. Bildverarbeitung'95 - Forschen, Entwickeln, Anwenden. Technische Akademie Esslingen. 365--380
Geißler, P, Jähne, B and Pöppl, S J (1993). Depth-from-focus zur Bestimmung der Konzentration und Größe von Gasblasen. Proc. 15. DAGM-Symposium Mustererkennung. Springer. 560--567
Geißler, (1998). Depth-from-Focus zur Messung der Größenverteilung durch Wellenbrechen erzeugter Blasenpopulationen. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg
Jähne, (2011). Der Ozean im Labor, Bildverarbeitung in den Umweltwissenschaften. www.laborundmore.de/
Jähne, (2011). Der Standard 1288 der European Machine Vision Association (EMVA 1288): Was macht die Qualität aus?. http://www.qe-online.de/home
Jähne, (2011). Der Standard EMVA 1288: Objektive Charakterisierung von Bildsensoren und digitalen Kameras. www.elektroniknet.de

Pages