Publications

Export 1965 results:
Author Title Type [ Year(Asc)]
Filters: Filter is   [Clear All Filters]
2017
Kirillov, A, Levinkov, E, Andres, B, Savchynskyy, B and Rother, C (2017). InstanceCut: From edges to instances with MultiCut. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017-Janua 7322–7331
Haller, A (2017). Interactive Watershed Based Segmentation For Biological Images. University of Heidelberg
Levinkov, E, Uhrig, J, Tang, S, Omran, M, Insafutdinov, E, Kirillov, A, Rother, C, Brox, T, Schiele, B and Andres, B (2017). Joint graph decomposition & node labeling: Problem, algorithms, applications. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017-Janua 1904–1912
Kirillov, A, Schlesinger, D, Zheng, S, Savchynskyy, B, Torr, P H S and Rother, C (2017). Joint training of generic CNN-CRF models with stochastic optimization. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 10112 LNCS 221–236. http://host.robots.ox.ac.uk:8080/leaderboard
Storath, M, Weinmann, A and Unser, M (2017). Jump-penalized least absolute values estimation of scalar or circle-valued signals. Information and Inference. 6 225–245PDF icon Technical Report (3.4 MB)
Schott, L (2017). Learned Watershed Algorithm: End-To-End Learning Of Seeded Segmentation. Heidelberg University
Wolf, S, Schott, L, Köthe, U and Hamprecht, F A (2017). Learned Watershed: End-to-End Learning of Seeded Segmentation. ICCV. 2030-2038PDF icon Technical Report (3.76 MB)
Weiler, M (2017). Learning Steerable Filters For Rotation Equivariant Convolutional Neural Networks. Heidelberg University
Kruse, J, Rother, C and Schmidt, U (2017). Learning to Push the Limits of Efficient FFT-Based Image Deconvolution. Proceedings of the IEEE International Conference on Computer Vision. 2017-Octob 4596–4604
Kruse, J, Rother, C, Schmidt, U and Dresden, T U (2017). Learning To Push The Limits Of Efficient Fft-Based Image Deconvolution - Supplemental Material
Bautista, M, Fuchs, P and Ommer, B (2017). Learning Where to Drive by Watching Others. Proceedings of the German Conference Pattern Recognition. Springer-Verlag, Basel. 1
Bodnariuc, E, Petra, S, Schnörr, C and Voorneveld, J (2017). A Local Spatio-Temporal Approach to Plane Wave Ultrasound Particle Image Velocimetry. Proc. GCPR
Rathke, F, Desana, M and Schnörr, C (2017). Locally Adaptive Probabilistic Models for Global Segmentation of Pathological OCT Scans. MICCAI. Proceedings. 177-184PDF icon Technical Report (4.79 MB)
Rathke, F, Desana, M and Schnörr, C (2017). Locally Adaptive Probabilistic Models for Global Segmentation of Pathological OCT Scans. Proc. MICCAI
Brattoli, B, Büchler, U, Wahl, A - S, Schwab, M E and Ommer, B (2017). LSTM Self-Supervision for Detailed Behavior Analysis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (BB and UB contributed equally)PDF icon Article (8.75 MB)
Aström, F, Hühnerbein, R, Savarino, F, Recknagel, J and Schnörr, C (2017). MAP Image Labeling Using Wasserstein Messages and Geometric Assignment. Proc. SSVM. Springer. 10302
Kandemir, M, Hamprecht, F A, Wojek, C and Schmidt, U (2017). Maschinelles Lernen. Patent, Patent Number WO2017032775A1PDF icon Technical Report (317.04 KB)
Balluff, B, Hanselmann, M and Heeren, R M A (2017). Mass spectrometry imaging for the investigation of intratumor heterogeneity. Advances in Cancer Research. Elsevier. 134 201-230
Haltebourg, C (2017). Modeling of Heat Exchange Across the Ocean Surface as Measured by Active Thermography. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg. Dissertation
Beier, T, Pape, C, Rahaman, N, Prange, T, Berg, S, Bock, D, Cardona, A, Knott, G W, Plaza, S M, Scheffer, L K, Köthe, U, Kreshuk, A and Hamprecht, F A (2017). Multicut brings automated neurite segmentation closer to human performance. Nature Methods. 14 101-102. http://rdcu.be/oVDQ
Krasowki, N, Beier, T, Knott, G W, Köthe, U, Hamprecht, F A and Kreshuk, A (2017). Neuron Segmentation with High-Level Biological Priors. IEEE Transactions on Medical Imaging. 37
Savarino, F, Hühnerbein, R, Aström, F, Recknagel, J and Schnörr, C (2017). Numerical Integration of Riemannian Gradient Flows for Image Labeling. Proc. SSVM. Springer. 10302
Ulman, V, Maška, M, Magnusson, K E G, Ronneberger, O, Haubold, C, Harder, N, Matula, P, Matula, P, Svoboda, D, Radojevic, M, Smal, I, Rohr, K, Jaldén, J, Blau, H M, Dzyubachyk, O, Lelieveldt, B, Xiao, P, Li, Y, Cho, S - Y, Dufour, A, Olivo-Marin, J C, Reyes-Aldasoro, C C, Solis-Lemus, J A, Bensch, R, Brox, T, Stegmaier, J, Mikut, R, Wolf, S, Hamprecht, F A, Esteves, T, Quelhas, P, Demirel, Ö, Malström, L, Jug, F, Tomančák, P, Meijering, E, Muñoz-Barrutia, A, Kozubek, M and Ortiz-de-Solorzano, C (2017). An Objective Comparison of Cell Tracking Algorithms. Nature Methods. 14 1141-1152PDF icon Technical Report (4.24 MB)
Wahl, A - S, Büchler, U, Brändli, A, Brattoli, B, Musall, S, Kasper, H, Ineichen, B V, Helmchen, F, Ommer, B and Schwab, M E (2017). Optogenetically stimulating the intact corticospinal tract post-stroke restores motor control through regionalized functional circuit formation. Nature Communications. (ASW & UB contributed equally; BO and MES contributed equally). https://www.nature.com/articles/s41467-017-01090-6
Krull, A, Brachmann, E, Nowozin, S, Michel, F, Shotton, J and Rother, C (2017). PoseAgent: Budget-constrained 6D object pose estimation via reinforcement learning. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017-Janua 2566–2574. http://arxiv.org/abs/1612.03779
Hehn, T (2017). A Probabilistic Approach To Learn Complex Differentiable Split Functions In Decision Trees Using Gradient Ascent. Heidelberg University
Massiceti, D, Krull, A, Brachmann, E, Rother, C and Torr, P H S (2017). Random Forests versus Neural Networks − What's best for camera location
Vianello, A (2017). Robust 3D Surface Reconstruction from Light Fields. IWR, Univ. Heidelberg. Dissertation
Haubold, C (2017). Scalable Inference for Multi-Target Tracking on Proliferating Cells. University of Heidelberg
Berger, J, Lenzen, F, Becker, F, Neufeld, A and Schnörr, C (2017). {Second-Order Recursive Filtering on the Rigid-Motion Lie Group SE(3) Based on Nonlinear Observations. J. Math. Imag. Vision. 58 102–129
Markowsky, P, Reith, S, Zuber, T E, König, R, Rohr, K and Schnörr, C (2017). Segmentation of cell structure using model-based set covering with iterative reweighting. Proc. ISBI
Neigel, P (2017). Self-Similarity Based Detection Of Temporal Motifs In Multivariate Signals. Heidelberg University
Sümer, Ö, Dencker, T and Ommer, B (2017). Self-supervised Learning of Pose Embeddings from Spatiotemporal Relations in Videos. Proceedings of the IEEE International Conference on Computer Vision (ICCV)PDF icon Paper (3.98 MB)PDF icon Supplementary Material (3.36 MB)
Hullin, M, Klein, R, Schultz, T, Yao, A, Li, W, Hosseini Jafari, O and Rother, C (2017). Semantic-Aware Image Smoothing. Vision, Modeling, and Visualization. https://hci.iwr.uni-heidelberg.de/vislearn/wp-content/uploads/2014/08/paper1024_CRC.pdf
Pape, C, Beier, T, Li, P, Jain, V, Brock, D D and Kreshuk, A (2017). Solving Large Multicut Problems for Connectomics via Domain Decomposition. Bioimage Computing Workshop. ICCV. 1-10

Pages