Publications

Export 1965 results:
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Schnörr, (1996). Convex Variational Segmentation of Multi-Channel Images. Proc. 12th Int. Conf. on Analysis and Optimization of Systems: Images, Wavelets and PDE's. Springer-Verlag, Paris. 219
Royer, L A, Richmond, D L, Rother, C, Andres, B and Kainmueller, D (2016). Convexity shape constraints for image segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2016-Decem 402–410. http://arxiv.org/abs/1509.02122
Hering, M, Körner, K and Jähne, B (2009). Correlated speckle noise in white-light interferometry: theoretical analysis of measurement uncertainty. Appl. Optics. 48 525--538
Krause, G (2017). Correlation Of Performance And Entropy In Active Learning With Convolutional Neural Networks. Heidelberg University
Maco, B, Holtmaat, A, Cantoni, M, Kreshuk, A, Straehle, C N, Hamprecht, F A and Knott, G W (2013). Correlative in vivo 2 photon and focused ion beam scanning electron microscopy of cortical neurons. PloS one. 8 (2)PDF icon Technical Report (2.13 MB)
Rother, C, Kolmogorov, V, Minka, T and Blake, A (2006). Cosegmentation of image pairs by histogram matching - Incorporating a global constraint into MRFs. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1 994–1000. http://research.microsoft.com/vision/cambridge/
Vicente, S, Kolmogorov, V and Rother, C (2010). Cosegmentation revisited: Models and optimization. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 6312 LNCS 465–479
Peter, S, Diego, F, Hamprecht, F A and Nadler, B (2017). Cost-efficient Gradient Boosting. NIPS, poster
Güssefeld, B, Honauer, K and Kondermann, D (2016). Creating Feasible Reflectance Data for Synthetic Optical Flow Datasets. Advances in Visual Computing - 12th International Symposium, {ISVC} 2016, Las Vegas, NV, USA, December 12-14, 2016, Proceedings, Part {I}
Meister, S Nicolas Ro (2014). On Creating Reference Data for Performance Analysis in Image Processing. IWR, Fakultät für Physik und Astronomie, Univ. Heidelberg. Dissertation
Meister, S (2014). On Creating Reference Data for Performance Analysis in Image Processing. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/16193
Meister, S (2013). On Creating Reference Data for Performance Analysis in Image Processing. University of Heidelberg
Petra, S, Schnörr, C and Schröder, A (2012). Critical Parameter Values and Reconstruction Properties of Discrete Tomography: Application to Experimental Fluid Dynamics. http://arxiv.org/abs/1209.4316
Petra, S, Schnörr, C and Schröder, A (2013). Critical Parameter Values and Reconstruction Propertiesof Discrete Tomography: Application to Experimental FluidDynamics. Fundamenta Informaticae. 125 285--312PDF icon Technical Report (1.42 MB)
Jähne, B, Waas, S and Klinke, J (1992). A critical theoretical review of optical techniques for short ocean wave measurements. Optics of the Air-Sea Interface: Theory and Measurements. 1749 204--215
Sayed, N, Brattoli, B and Ommer, B (2018). Cross and Learn: Cross-Modal Self-Supervision. German Conference on Pattern Recognition (GCPR) (Oral). Stuttgart, Germany. https://arxiv.org/abs/1811.03879v1PDF icon Article (891.47 KB)PDF icon Oral slides (9.17 MB)
Fehr, J, Reisert, M and Burkhardt, H (2009). Cross-Correlation and Rotation Estimation of Local 3D Vector FieldPatches. Proceedings of the ISVC 2009, Part I. Springer. 5875 287-296
Schlesinger, D, Jug, F, Myers, G, Rother, C and Kainmueller, D (2017). Crowd sourcing image segmentation with iaSTAPLE. Proceedings - International Symposium on Biomedical Imaging. 401–405
Maier-Hein, L, Mersmann, S, Kondermann, D, Stock, C, Kenngott, H, Sanchez, A, Wagner, M, Preukschas, A, Wekerle, A - L, Helfert, S, Bodenstedt, S and Speidel, S (2014). Crowdsourcing for reference correspondence generation in endoscopic images. MICCAI
Shekhovtsov, A, Kohli, P and Rother, C (2012). Curvature prior for MRF-based segmentation and shape inpainting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 7476 LNCS 41–51
Shekhovtsov, A, Kohli, P and Rother, C (2012). Curvature prior for MRF-based segmentation and shape inpainting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 7476 LNCS 41–51. www.research.microsoft.com/vision/cambridge http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/papers/StereoSegmentation_PAMI06.pdf%5Cnpapers3://publication/uuid/F008E9F4-510D-4478-A3C0-1BFB22F6AEA0
Shekhovtsov, A, Kohli, P and Rother, C (2012). Curvature prior for MRF-based segmentation and shape inpainting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 7476 LNCS 41–51. http://arxiv.org/abs/1109.1480
Beier, T, Kröger, T, Kappes, J H, Köthe, U and Hamprecht, F A (2014). Cut, Glue and Cut: A Fast, Approximate Solver for Multicut Partitioning. 2014 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2014, Columbus, OH, USA, June 23-28, 2014. http://dx.doi.org/10.1109/CVPR.2014.17PDF icon Technical Report (10.06 MB)
D
Lang, S and Ommer, B (2020). Das Objekt jenseits der Digitalisierung. Das digitale Objekt. 7. http://www.deutsches-museum.de/fileadmin/Content/010_DM/060_Verlag/studies-7.pdfPDF icon lang_ommer_digitalhumanities_2020_.pdf (599.56 KB)
Jähne, (2007). Data acquisition by imaging detectors. Handbook of Experimental Fluid Mechanics. Springer. 1419--1436
Jähne, B, Klar, M and Jehle, M (2007). Data analysis. Handbook of Experimental Fluid Mechanics. Springer. 1437--1491
Hader, S (2006). Data Mining auf multidimensionalen und komplexen Daten in der industriellen Bildverarbeitung. University of Heidelberg
Honauer, K, Johannsen, O, Kondermann, D and Goldlücke, B (2016). A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields. Computer Vision - ACCV 2016 : 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part III. Springer, Cham
Wanner, S, Meister, S and Goldlücke, B (2013). Datasets and Benchmarks for Densely Sampled 4D Light Fields. Vision, Modeling & Visualization. 225--226
Rennekamp, F (1998). Datenbank Gestützte Verwaltung Kalibrierter Bildsequenzen Zur Qualitätsbewertung Von Algorithmen. Fakultät für Physik und Astronomie Universität Heidelberg
Nowozin, S, Rother, C, Bagon, S, Sharp, T, Yao, B and Kohli, P (2011). Decision tree fields. Proceedings of the IEEE International Conference on Computer Vision. 1668–1675
Lu, G -hung, Tsai, W -ting and Jähne, B (2019). Decomposing infrared images of wind waves for quantitative separation into characteristic flow processes. IEEE Transactions on Geoscience and Remote Sensing. 57 8304–8316
Becker, F and Schnörr, C (2008). Decomposition of Quadratric Variational Problems. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 325--334PDF icon Technical Report (1.29 MB)
Becker, F and Schnörr, C (2008). Decomposition of Quadratric Variational Problems. Pattern Recognition -- 30th DAGM Symposium. 5096 325--334
Haußmann, M, Hamprecht, F A and Kandemir, M (2019). Deep Active Learning with Adaptive Acquisition. IJCAI. Proceedings. 2470-2476PDF icon Technical Report (137.6 KB)

Pages