Publications

Export 1963 results:
[ Author(Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Berthe, A, Kondermann, D, Jähne, B and Ketzscher, U (2009). The wall PIV measurement technique for near wall flow fields in biofliud mechanics. Imaging Measurement Methods for Flow Analysis, Results of the DFG Priority Programme 1147 Imaging Measurement Methods for Flow Analysis 2003-2009. Springer. 106 11--20
Berthe, A, Kondermann, D, Christensen, C, Goubergrits, L, Garbe, C S, Affeld, K and Kertzscher, U (2010). Three-dimensional, three-component wall-PIV. Exp. Fluids. 48 online
Beringer, O (1998). Ein Messsystem Zur Untersuchung Von Sedimentverlagerungen Und Durchmischungsprozessen Mittels Digitaler Bildfolgenanalyse. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg
Bergtholdt, M, Cremers, D and Schnörr, C (2005). Variational Segmentation with Shape Priors. Handbook of Mathematical Models in Computer Vision. Springer. 147-160
Bergtholdt, M, Kappes, J H, Schmidt, S and Schnörr, C (2010). A Study of Parts-Based Object Class Detection Using Complete Graphs. Int. J. Comp. Vision. 87 93-117. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s11263-009-0209-1
Bergtholdt, M, Kappes, J H and Schnörr, C (2006). Learning of Graphical Models and Efficient Inference for Object Class Recognition. Proc. DAGM 2006. Springer. 375-388 375-388
Bergtholdt, M and Schnörr, C (2005). Shape Priors and Online Appearance Learning for Variational Segmentation and Object Recognition in Static Scenes. Pattern Recognition, Proc. 27th DAGM Symposium. Springer. 3663 342–350
Bergtholdt, M, Kappes, J H, Schmidt, S and Schnörr, C (2010). A Study of Parts-Based Object Class Detection Using Complete Graphs. Int.~J.~Comp.~Vision. 87 93-117. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s11263-009-0209-1PDF icon Technical Report (2.18 MB)
Berger, J and Schnörr, C (2016). Joint Recursive Monocular Filtering of Camera Motion and Disparity Map. 38th German Conference on Pattern Recognition. Springer, Hannover. https://arxiv.org/abs/1606.02092PDF icon Technical Report (2.34 MB)
Berger, J, Lenzen, F, Becker, F, Neufeld, A and Schnörr, C (2017). {Second-Order Recursive Filtering on the Rigid-Motion Lie Group SE(3) Based on Nonlinear Observations. J. Math. Imag. Vision. 58 102–129
Berger, J and Schnörr, C (2016). Joint Recursive Monocular Filtering of Camera Motion and Disparity Map. 38th German Conference on Pattern Recognition
Berger, J, Neufeld, A, Becker, F, Lenzen, F and Schnörr, C (2015). Second Order Minimum Energy Filtering on SE(3) with Nonlinear Measurement Equations. Scale Space and Variational Methods in Computer Vision (SSVM 2015)
Berger, J, Lenzen, F, Becker, F, Neufeld, A and Schnörr, C (2015). Second-Order Recursive Filtering on the Rigid-Motion Lie Group SE(3) Based on Nonlinear Observations. http://arxiv.org/abs/1507.06810
Berger, J, Neufeld, A, Becker, F, Lenzen, F and Schnörr, C (2015). Second Order Minimum Energy Filtering on SE(3) with Nonlinear Measurement Equations. Scale Space and Variational Methods in Computer Vision (SSVM 2015). Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-18461-6_32PDF icon Technical Report (364.01 KB)
Berger, J, Lenzen, F, Becker, F, Neufeld, A and Schnörr, C (2015). Second-Order Recursive Filtering on the Rigid-Motion Lie Group SE(3) Based on Nonlinear Observations. http://arxiv.org/abs/1507.06810PDF icon Technical Report (4.42 MB)
Berger, K, Meister, S, Nair, R and Kondermann, D (2013). A State of the Art Report on Kinect Sensor Setups in Computer Vision. Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications. Springer. 8200 257-272
Berg, S, Kutra, D, Kroeger, T, Straehle, C N, Kausler, B X, Haubold, C, Schiegg, M, Ales, J, Beier, T, Rudy, M, Eren, K, Cervantes, J I, Xu, B, Beuttenmüller, F, Wolny, A, Zhang, C, Köthe, U, Hamprecht, F A and Kreshuk, A (2019). ilastik: interactive machine learning for (bio)image analysis. Nature Methods. 16 1226-1232
Beranek, R (1996). Vermessung Von Blickpunkten Durch Automatische Bildanalyse Für Ergonomische Fragestellungen Bei Der Fahrzeugkonstruktion. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg
Bentele, M (1998). Zeitliche Rekonstruktion Und Visualisierung Dynamischer Prozesse. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg
Bengio, Y, Deleu, T, Rahaman, N, Ke, R, Lachapelle, S, Bilaniuk, O, Goyal, A and Pal, C (2019). A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms. arXiv preprint arXiv:1901.10912PDF icon Technical Report (871.59 KB)
Bendinger, A L, Debus, C, Glowa, C, Karger, C P, Peter, J and Storath, M (2019). Bolus arrival time estimation in dynamic contrast-enhanced magnetic resonance imaging of small animals based on spline models, in press. Physics in Medicine and Biology. 64
Bellagente, M, Haußmann, M, Luchmann, M and Plehn, T (2021). Understanding Event-Generation Networks via Uncertainties. arXiv preprint. https://arxiv.org/abs/2104.04543v1
Bell, P and Ommer, B (2016). Digital Connoisseur? How Computer Vision Supports Art History. Connoisseurship nel XXI secolo. Approcci, Limiti, Prospettive, A. Aggujaro & S. Albl (ed.). Artemide, Rome
Bell, P and Ommer, B (2018). Computer Vision und Kunstgeschichte — Dialog zweier Bildwissenschaften. Computing Art Reader: Einführung in die digitale Kunstgeschichte, P. Kuroczyński et al. (ed.)PDF icon 413-17-83318-2-10-20181210.pdf (2.98 MB)
Bell, P and Ommer, B (2015). Training Argus. Kunstchronik. Monatsschrift für Kunstwissenschaft, Museumswesen und Denkmalpflege. Zentralinstitut für Kunstgeschichte. 68 414--420
Bell, P, Schlecht, J and Ommer, B (2013). Nonverbal Communication in Medieval Illustrations Revisited by Computer Vision and Art History. Visual Resources Journal, Special Issue on Digital Art History. Taylor & Francis. 29 26--37. http://www.tandfonline.com/doi/abs/10.1080/01973762.2013.761111
Beier, T, Kröger, T, Kappes, J H, Köthe, U and Hamprecht, F A (2014). Cut, Glue and Cut: A Fast, Approximate Solver for Multicut Partitioning. 2014 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2014, Columbus, OH, USA, June 23-28, 2014. http://dx.doi.org/10.1109/CVPR.2014.17PDF icon Technical Report (10.06 MB)
Beier, T (2014). Graph Based Image Analysis. University of Heidelberg
Beier, T, Hamprecht, F A and Kappes, J H (2015). Fusion Moves for Correlation Clustering. CVPR. Proceedings. 3507-3516PDF icon Technical Report (1.19 MB)
Beier, T, Andres, B, Köthe, U and Hamprecht, F A (2016). An Efficient Fusion Move Algorithm for the Minimum Cost Lifted Multicut Problem. ECCV. Proceedings. Springer. LNCS 9906 715-730PDF icon Technical Report (4.89 MB)
Beier, T, Pape, C, Rahaman, N, Prange, T, Berg, S, Bock, D, Cardona, A, Knott, G W, Plaza, S M, Scheffer, L K, Köthe, U, Kreshuk, A and Hamprecht, F A (2017). Multicut brings automated neurite segmentation closer to human performance. Nature Methods. 14 101-102. http://rdcu.be/oVDQ
Beier, T (2018). Multicut Algorithms for Neurite Segmentation. Heidelberg University
Behl, A, Hosseini Jafari, O, Mustikovela, S Karthik, Abu Alhaija, H, Rother, C and Geiger, A (2017). Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?. Proceedings of the IEEE International Conference on Computer Vision. 2017-Octob 2593–2602
Behl, A, Hosseini Jafari, O, Mustikovela, S Karthik, Abu Alhaija, H, Rother, C and Geiger, A (2017). Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?. Proceedings of the IEEE International Conference on Computer Vision. 2017-Octob 2593–2602
Becker, F (2009). Variational Correlation and Decomposition Methods for Particle Image Velocimetry. Heidelberg University, Faculty of Mathematics and Computer Sciences, Heidelberg, Germany. http://www.ub.uni-heidelberg.de/archiv/9766/

Pages