C
B. Maco, Holtmaat, A., Cantoni, M., Kreshuk, A., Straehle, C. N., Hamprecht, F. A., and Knott, G. W.,
“Correlative in vivo 2 photon and focused ion beam scanning electron microscopy of cortical neurons”,
PloS one, vol. 8 (2), 2013.
Technical Report (2.13 MB) L. A. Royer, Richmond, D. L., Rother, C., Andres, B., and Kainmueller, D.,
“Convexity shape constraints for image segmentation”, in
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016, vol. 2016-Decem, pp. 402–410.
C. Schnörr,
“Convex Variational Segmentation of Multi-Channel Images”, in
Proc. 12th Int. Conf. on Analysis and Optimization of Systems: Images, Wavelets and PDE's, Paris, 1996, vol. 219.
J. Yuan, Schnörr, C., Kohlberger, T., and Ruhnau, P.,
“Convex Set-Based Estimation of Image Flows”, in
ICPR 2004 – 17th Int. Conf. on Pattern Recognition, Cambridge, UK, 2004, vol. 1, pp. 124-127.
J. Keuchel, Schellewald, C., Cremers, D., and Schnörr, C.,
“Convex Relaxations for Binary Image Partitioning and Perceptual Grouping”, in
Mustererkennung 2001, Munich, Germany, 2001, vol. 2191, pp. 353–360.
J. Lellmann, Kappes, J. H., Yuan, J., Becker, F., Schnörr, C., Mórken, K., and Lysaker, M.,
“Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation”, in
Scale Space and Variational Methods in Computer Vision (SSVM 2009), 2009, vol. 5567, pp. 150-162.
J. Lellmann, Kappes, J. H., Yuan, J., Becker, F., and Schnörr, C.,
“Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation”, in
Scale Space and Variational Methods in Computer Vision (SSVM 2009), 2009, vol. 5567, pp. 150-162.
Technical Report (1.75 MB) J. Lellmann, Kappes, J. H., Yuan, J., Becker, F., and Schnörr, C.,
“Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation”, IWR, University of Heidelberg, 2008.
Technical Report (2.6 MB) J. Yuan, Steidl, G., and Schnörr, C.,
“Convex Hodge Decomposition of Image Flows”, in
Pattern Recognition -- 30th DAGM Symposium, 2008, vol. 5096, p. 416--425.
Technical Report (290.72 KB) K. Fundana, Heyden, A., Gosch, C., and Schnörr, C.,
“Continuous Graph Cuts for Prior-Based Object Segmentation”, in
19th Int.~Conf.~Patt.~Recog.~(ICPR), 2008, p. 1--4.
Technical Report (414.89 KB) B. Jähne, Jähne, B., Haußecker, H., and Geißler, P.,
“Continuous and digital signals”,
Handbook of Computer Vision and Applications, vol. 2. Academic Press, p. 9--34, 1999.
M. Schiegg, Hanslovsky, P., Kausler, B. X., Hufnagel, L., and Hamprecht, F. A.,
“Conservation Tracking”, in
ICCV 2013. Proceedings, 2013, p. 2928--2935.
Technical Report (5.22 MB) F. Kluger, Brachmann, E., Ackermann, H., Rother, C., Yang, M. Ying, and Rosenhahn, B.,
“CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus”, in
CVPR 2020, 2020.
PDF (9.95 MB) A. Arnab, Zheng, S., Jayasumana, S., Romera-paredes, B., Kirillov, A., Savchynskyy, B., Rother, C., Kahl, F., and Torr, P.,
“Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation”,
Cvpr, vol. XX, pp. 1–15, 2018.
M. Hanselmann, Kirchner, M., Renard, B. Y., Amstalden, E. R., Glunde, K., Heeren, R. M. A., and Hamprecht, F. A.,
“Concise Representation of MS Images by Probabilistic Latent Semantic Analysis”,
Analytical Chemistry, vol. 80, pp. 9649-9658, 2008.
Technical Report (3.91 MB)