All Publications

2020

Zern, A, Zisler, M, Petra, S and Schnörr, C (2020). Unsupervised Assignment Flow: Label Learning on Feature Manifolds by Spatially Regularized Geometric Assignment. Journal of Mathematical Imaging and Vision. https://doi.org/10.1007/s10851-019-00935-7
Kamann, C and Rother, C (2020). Benchmarking the Robustness of Semantic Segmentation Models. CVPR 2020. http://arxiv.org/abs/1908.05005PDF icon PDF (3.61 MB)
Milbich, T, Roth, K, Bharadhwaj, H, Sinha, S, Bengio, Y, Ommer, B and Cohen, J Paul (2020). Diva: Diverse Visual Feature Aggregation For Deep Metric Learning. https://arxiv.org/abs/2004.13458
Tourani, S, Shekhovtsov, A, Rother, C and Savchynskyy, B (2020). Taxonomy of Dual Block-Coordinate Ascent Methods for Discrete Energy Minimization. AISTATS 2020. https://gitlab.com/PDF icon PDF (2.58 MB)
Censor, Y, Petra, S and Schnörr, C (2020). Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case. J. Appl. Numer. Optimization (in press; arXiv:1911.05498). 2 15-62. http://jano.biemdas.com/archives/1060
Haller, S, Prakash, M, Hutschenreiter, L, Pietzsch, T, Rother, C, Jug, F, Swoboda, P and Savchynskyy, B (2020). A Primal-Dual Solver for Large-Scale Tracking-by-Assignment. AISTATS 2020PDF icon PDF (1.04 MB)
Bhowmik, A, Gumhold, S, Rother, C and Brachmann, E (2020). Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task. CVPR 2020 (oral). http://arxiv.org/abs/1912.00623PDF icon PDF (2.74 MB)
Roth, K, Milbich, T, Sinha, S, Gupta, P, Ommer, B and Cohen, J Paul (2020). Revisiting Training Strategies and Generalization Performance in Deep Metric Learning. https://arxiv.org/pdf/2002.08473.pdf
Schnörr, (2020). Assignment Flows. Handbook of Variational Methods for Nonlinear Geometric Data. Springer. 235—260. https://www.springer.com/gp/book/9783030313500
Radev, S T, Mertens, U K, Voss, A, Ardizzone, L and Köthe, U (2020). BayesFlow: Learning complex stochastic models with invertible neural networks. http://arxiv.org/abs/2003.06281PDF icon PDF (5.36 MB)
Desana, M and Schnörr, C (2020). Sum-Product Graphical Models. Machine Learning. 109 135–173
Ardizzone, L, Mackowiak, R, Rother, C and Köthe, U (2020). Exact Information Bottleneck with Invertible Neural Networks: Getting the Best of Discriminative and Generative Modeling. http://arxiv.org/abs/2001.06448PDF icon PDF (2.87 MB)
Esser, P, Rombach, R and Ommer, B (2020). A Disentangling Invertible Interpretation Network for Explaining Latent Representations. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://compvis.github.io/iin/PDF icon Article (13.07 MB)
Milbich, T, Roth, K and Ommer, B (2020). Sharing Matters For Generalization In Deep Metric Learning. https://arxiv.org/abs/2004.05582
Milbich, T, Ghori, O and Ommer, B (2020). Unsupervised Representation Learning by Discovering Reliable Image Relations. Pattern Recognition. 102. http://arxiv.org/abs/1911.07808
Sorrenson, P, Rother, C and Köthe, U (2020). Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN). Intl. Conf. Learning Representations (ICLR). http://arxiv.org/abs/2001.04872PDF icon PDF (2.43 MB)
Zeilmann, A, Savarino, F, Petra, S and Schnörr, C (2020). Geometric Numerical Integration of the Assignment Flow. Inverse Problems. 36 034004 (33pp)
Wolf, S, Bailoni, A, Pape, C, Rahaman, N, Kreshuk, A, Köthe, U and Hamprecht, F A (2020). The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph Partitioning. IEEE Transactions on Pattern Analysis and Machine IntelligencePDF icon PDF (2.58 MB)
Milbich, T, Roth, K and Ommer, B (2020). PADS: Policy-Adapted Sampling for Visual Similarity Learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1. https://arxiv.org/abs/2003.11113
Schilling, H, Gutsche, M, Brock, A, Späth, D, Rother, C and Krispin, K (2020). Mind the Gap – A Benchmark for Dense Depth Prediction beyond Lidar. 2nd Workshop on Safe Artificial Intelligence for Automated Driving, in conjunction with CVPR 2020
Zern, A, Zeilmann, A and Schnörr, C (2020). Assignment Flows for Data Labeling on Graphs: Convergence and Stability. preprint: arXiv. https://arxiv.org/abs/2002.11571
Krull, A, Hirsch, P, Rother, C, Schiffrin, A and Krull, C (2020). Artificial-intelligence-driven scanning probe microscopy. Communications Physics. 3
Mustikovela, S K, Jampani, V, De Mello, S, Liu, S, Iqbal, U, Rother, C and Kautz, J (2020). Self-Supervised Viewpoint Learning From Image Collections. CONSAC. https://github.com/NVlabs/SSVPDF icon PDF (8.77 MB)
Kluger, F, Brachmann, E, Ackermann, H, Rother, C, Yang, M Ying and Rosenhahn, B (2020). CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus. CVPR 2020. http://arxiv.org/abs/2001.02643PDF icon PDF (9.95 MB)

2019

Hühnerbein, R, Savarino, F, Petra, S and Schnörr, C (2019). Learning Adaptive Regularization for Image Labeling Using Geometric Assignment. Proc. SSVM. Springer
Haußmann, M, Hamprecht, F A and Kandemir, M (2019). Deep Active Learning with Adaptive Acquisition. IJCAI. Proceedings, in press
Großkinsky, (2019). Synaptic Cleft Prediction On Electron Microsope Images. Heidelberg University
Ardizzone, L, Lüth, C, Kruse, J, Rother, C and Köthe, U (2019). Guided Image Generation with Conditional Invertible Neural Networks. http://arxiv.org/abs/1907.02392
Zisler, M, Zern, A, Petra, S and Schnörr, C (2019). Self-Assignment Flows for Unsupervised Data Labeling on Graphs. preprint: arXiv. https://arxiv.org/abs/1911.03472
Kotovenko, D, Sanakoyeu, A, Lang, S, Ma, P and Ommer, B (2019). Using a Transformation Content Block For Image Style Transfer. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Esser, P, Haux, J and Ommer, B (2019). Unsupervised Robust Disentangling of Latent Characteristics for Image Synthesis. Proceedings of the Intl. Conf. on Computer Vision (ICCV). https://compvis.github.io/robust-disentangling/
Rathke, F and Schnörr, C (2019). Fast Multivariate Log-Concave Density Estimation. Comp. Statistics & Data Analysis. 140 41-58
Desana, M and Schnörr, C (2019). Sum-Product Graphical Models. Machine Learning. https://doi.org/10.1007/s10994-019-05813-2
Kiefer, L, Storath, M and Weinmann, A (2019). An efficient algorithm for the piecewise affine-linear Mumford-Shah model based on a Taylor jet splitting. IEEE Transactions on Image Processing. 29PDF icon Technical Report (2.04 MB)
Hosseini Jafari, O, Mustikovela, S Karthik, Pertsch, K, Brachmann, E and Rother, C (2019). iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11363 LNCS 477–492
Zisler, M, Zern, A, Petra, S and Schnörr, C (2019). Unsupervised Labeling by Geometric and Spatially Regularized Self-Assignment. Proc. SSVM. Springer
Haußmann, M, Hamprecht, F A and Kandemir, M (2019). Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation. UAI. Proceedings, in press
Pandey, N (2019). Weakly Supervised Semantic Segmentation. Heidelberg University
Leistner, T, Schilling, H, Mackowiak, R, Gumhold, S and Rother, C (2019). Learning to Think Outside the Box: Wide-Baseline Light Field Depth Estimation with EPI-Shift. Proceedings - 2019 International Conference on 3D Vision, 3DV 2019. 249–257. http://arxiv.org/abs/1909.09059 http://dx.doi.org/10.1109/3DV.2019.00036PDF icon PDF (8.94 MB)
Censor, Y, Petra, S and Schnörr, C (2019). Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case. preprint: arXiv. https://arxiv.org/abs/1911.05498

Pages