All Publications

2019

Kirschbaum, E, Haußmann, M, Wolf, S, Sonntag, H, Schneider, J, Elzoheiry, S, Kann, O, Durstewitz, D and Hamprecht, F A (2019). LeMoNADe: Learned Motif and Neuronal Assembly Detection in calcium imaging videos. ICLR. Proceedings
Storath, M, Kiefer, L and Weinmann, A (2019). Smoothing for signals with discontinuities using higher order Mumford-Shah models. Numerische Mathematik. 143(2) 423-460PDF icon Technical Report (1.09 MB)
Li, Y (2019). Semantic Instance Segmentation With The Multiway Mutex Watershed. Heidelberg University
Snajder, R (2019). Pipeline Für Die Automatisierte Objektsegmentierung Von 3D Lightshet Mikroskopiebildern. Heidelberg University
Bollweg, S, Haußmann, M, Kasieczka, G, Luchmann, M, Plehn, T and Thompson, J (2019). Deep-Learning Jets with Uncertainties and More . arXiv preprint arXiv:1904.10004
Kiefer, L, Storath, M and Weinmann, A (2019). An efficient algorithm for the piecewise affine-linear Mumford-Shah model based on a Taylor jet splitting. IEEE Transactions on Image Processing. 29PDF icon Technical Report (2.04 MB)
Li, J (2019). Robust Single Object Tracking Via Fully Convolutional Siamese Networks. Heidelberg University
Großkinsky, (2019). Synaptic Cleft Prediction On Electron Microsope Images. Heidelberg University
Haußmann, M, Hamprecht, F A and Kandemir, M (2019). Deep Active Learning with Adaptive Acquisition. IJCAI. Proceedings, in press
Berg, S, Kutra, D, Kroeger, T, Straehle, C N, Kausler, B X, Haubold, C, Schiegg, M, Ales, J, Beier, T, Rudy, M, Eren, K, Cervantes, J I, Xu, B, Beuttenmüller, F, Wolny, A, Zhang, C, Köthe, U, Hamprecht, F A and Kreshuk, A (2019). ilastik: interactive machine learning for (bio)image analysis. Nature Methods
Cerrone, L, Zeilmann, A and Hamprecht, F A (2019). End-to-End Learned Random Walker for Seeded Image Segmentation. CVPR. Proceedings. 12559-12568
Pandey, N (2019). Weakly Supervised Semantic Segmentation. Heidelberg University
Haußmann, M, Hamprecht, F A and Kandemir, M (2019). Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation. UAI. Proceedings, in press
Hanslovsky, P (2019). Isotropic Reconstruction of Neural Morphology from Large Non-Isotropic 3D Electron MIcroscopy. Heidelberg University
Hehn, T M, Kooij, J F P and Hamprecht, F A (2019). End-to-End Learning of Decision Trees and Forests. International Journal of Computer Vision. 1-15
Kirschbaum, E (2019). Novel Machine Learning Approaches for Neurophysiological Data Analysis. Heidelberg University
Bengio, Y, Deleu, T, Rahaman, N, Ke, R, Lachapelle, S, Bilaniuk, O, Goyal, A and Pal, C (2019). A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms. arXiv preprint arXiv:1901.10912PDF icon Technical Report (871.59 KB)
Fita, E (2019). Semi-Supervised Distance-Based Segmentation. Heidelberg University
Bendinger, A L, Debus, C, Glowa, C, Karger, C P, Peter, J and Storath, M (2019). Bolus arrival time estimation in dynamic contrast-enhanced magnetic resonance imaging of small animals based on spline models, in press. Physics in Medicine and Biology. 64
Esposito, M, Hennersperger, C, Göbl, R, Demaret, L, Storath, M, Navab, N, Baust, M and Weinmann, A (2019). Total variation regularization of pose signals with an application to 3D freehand ultrasound. IEEE Transactions on Medical Imaging. 38(10) 2245-2258
Remme, R (2019). Instance Segmentation Via Associative Pixel Embeddings. Heidelberg University
Haußmann, M, Gerwinn, S and Kandemir, M (2019). Bayesian Prior Networks with PAC Training. arXiv preprint arXiv:1906.00816

2018

Erb, W, Weinmann, A, Ahlborg, M, Brandt, C, Bringout, G, Buzug, T M, Frikel, J, Kaethner, C, Knopp, T, März, T, Möddel, M, Storath, M and Weber, A (2018). Mathematical Analysis of the 1D Model and Reconstruction Schemes for Magnetic Particle Imaging. Inverse Problems. 34
Beier, T (2018). Multicut Algorithms for Neurite Segmentation. Heidelberg University
Wolf, S, Pape, C, Bailoni, A, Rahaman, N, Kreshuk, A, Köthe, U and Hamprecht, F A (2018). The Mutex Watershed: Efficient, Parameter-Free Image Partitioning. ECCV. Proceedings, in press
Weiler, M, Hamprecht, F A and Storath, M (2018). Learning Steerable Filters for Rotation Equivariant CNNs. CVPR
Weilbach, C (2018). Dictionary Learning With Bayesian Gans For Few-Shot Classification. Heidelberg University
Draxler, F (2018). The Energy Landscape Of Deep Neural Networks. Heidelberg University
Kiechle, M, Storath, M, Weinmann, A and Kleinsteuber, M (2018). Model-based learning of local image features for unsupervised texture segmentation. IEEE Transactions on Image Processing. 27 1994-2007
Bredies, K, Holler, M, Storath, M and Weinmann, A (2018). Total Generalized Variation for Manifold-valued Data. SIAM Journal on Imaging Sciences. 11 1785 - 1848
Cerrone, L (2018). Deep End-To-End Learning Of A Diffusion Process For Seeded Image Segmentation. Heidelberg University
Hehn, T and Hamprecht, F A (2018). End-to-end Learning of Deterministic Decision Trees. German Conference on Pattern Recognition. Proceedings. Springer. LNCS 11269 612-627PDF icon Technical Report (1.4 MB)
Kawetzki, D (2018). Semantic Segmentation Of Urban Scenes Using Deep Learning. Heidelberg University
Draxler, F, Veschgini, K, Salmhofer, M and Hamprecht, F A (2018). Essentially No Barriers in Neural Network Energy Landscape. ICML. Proceedings. 80 1308--1317PDF icon Technical Report (685.93 KB)
Schimmel, F (2018). Learnability Of Approximated Graph Cut Segmentation. Heidelberg University
Rahaman, N, Arpit, D, Baratin, A, Draxler, F, Lin, M, Hamprecht, F A, Bengio, Y and Courville, A (2018). On the spectral bias of deep neural networks. arXiv preprint arXiv:1806.08734
Storath, M and Weinmann, A (2018). Fast median filtering for phase or orientation data. IEEE Transactions on Pattern Analysis and Machine Intelligence. 40 639–652PDF icon Technical Report (7.32 MB)
Fortun, D, Storath, M, Rickert, D, Weinmann, A and Unser, M (2018). Fast Piecewise-Affine Motion Estimation Without Segmentation. IEEE Transactions on Image Processing. 27 5612 - 5624

2017

Haller, A (2017). Interactive Watershed Based Segmentation For Biological Images. University of Heidelberg
Pape, C, Beier, T, Li, P, Jain, V, Brock, D D and Kreshuk, A (2017). Solving Large Multicut Problems for Connectomics via Domain Decomposition. Bioimage Computing Workshop. ICCV. 1-10

Pages