Publications

Export 223 results:
Author Title [ Type(Desc)] Year
Filters: Author is Christoph Schnörr  [Clear All Filters]
Conference Paper
Lellmann, J, Lenzen, F and Schnörr, C (2011). Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. Energy Min. Meth. Comp. Vis. Patt. Recogn. Springer. 6819 132--146PDF icon Technical Report (1 MB)
Lellmann, J, Lenzen, F and Schnörr, C (2011). Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. Energy Min. Meth. Comp. Vis. Patt. Recogn. Springer. 6819 132–146
Lellmann, J, Lenzen, F and Schnörr, C (2011). Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. Energy Min. Meth. Comp. Vis. Patt. Recogn. Springer. 132-146
Rathke, F, Schmidt, S and Schnörr, C (2011). Order Preserving and Shape Prior Constrained Intra-Retinal Layer Segmentation in Optical Coherence Tomography. MICCAI 2011, Proceedings. Springer. 6893 370-377
Rathke, F, Schmidt, S and Schnörr, C (2011). Order Preserving and Shape Prior Constrained Intra-Retinal Layer Segmentation in Optical Coherence Tomography. MICCAI. Springer. 6893 370–377
Rathke, F, Schmidt, S and Schnörr, C (2011). Order Preserving and Shape Prior Constrained Intra-Retinal Layer Segmentation in Optical Coherence Tomography. MICCAI. Springer. 6893 370--377PDF icon Technical Report (1.12 MB)
Swoboda, P, Savchynskyy, B, Kappes, J H and Schnörr, C (2014). Partial Optimality by Pruning for MAP-inference with General Graphical Models. IEEE Conference on Computer Vision and Pattern Recognition 2014PDF icon Technical Report (703.34 KB)
Swoboda, P, Savchynskyy, B, Kappes, J H and Schnörr, C (2014). Partial Optimality by Pruning for MAP-inference with General Graphical Models. IEEE Conference on Computer Vision and Pattern Recognition 2014
Swoboda, P, Savchynskyy, B, Kappes, J H and Schnörr, C (2013). Partial Optimality via Iterative Pruning for the Potts Model. Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision SSVM. 477-488
Swoboda, P, Savchynskyy, B, Kappes, J H and Schnörr, C (2013). Partial Optimality via Iterative Pruning for the Potts Model. Scale Space and Variational Methods (SSVM 2013)
Swoboda, P, Savchynskyy, B, Kappes, J H and Schnörr, C (2013). Partial Optimality via Iterative Pruning for the Potts Model. Scale Space and Variational Methods (SSVM 2013)PDF icon Technical Report (159.71 KB)
Swoboda, P, Savchynskyy, B, Kappes, J H and Schnörr, C (2013). Persistency by Pruning for General Graphical Models. submitted to NIPS 2013
Vlasenko, A and Schnörr, C (2008). Physically Consistent Variational Denoising of Image Fluid Flow Estimates. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 406--415PDF icon Technical Report (1.6 MB)
Kappes, J Hendrik, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2015). Probabilistic correlation clustering and image partitioning using perturbed Multicuts. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 9087 231–242
Kappes, J H, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2015). Probabilistic Correlation Clustering and Image Partitioning Using Perturbed Multicuts. Proc.~SSVM. SpringerPDF icon Technical Report (1.1 MB)
Bruhn, A, Weickert, J, Feddern, C, Kohlberger, T and Schnörr, C (2003). Real-Time Optic Flow Computation with Variational Methods. Proc. Computer Analysis of Images and Patterns (CAIP'03). Springer. 2756 222-229
Berger, J, Neufeld, A, Becker, F, Lenzen, F and Schnörr, C (2015). Second Order Minimum Energy Filtering on SE(3) with Nonlinear Measurement Equations. Scale Space and Variational Methods in Computer Vision (SSVM 2015). Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-18461-6_32PDF icon Technical Report (364.01 KB)
Berger, J, Neufeld, A, Becker, F, Lenzen, F and Schnörr, C (2015). Second Order Minimum Energy Filtering on SE(3) with Nonlinear Measurement Equations. Scale Space and Variational Methods in Computer Vision (SSVM 2015)
Andres, B, Hamprecht, F A and Garbe, C S (2007). Selection of Local Optical Flow Models by Means of Residual Analysis. Pattern Recognition. Springer. 4713 72-81PDF icon Technical Report (229.64 KB)
Andres, B, Garbe, C S, Schnörr, C and Jähne, B (2007). Selection of local optical flow models by means of residual analysis. Proceedings of the 29th DAGM Symposium on Pattern Recognition. Springer. 72--81
Görlitz, L, Menze, B H, Weber, M - A and Kelm, B Michael (2007). Semi-Supervised Tumor Detection in MRSI With Discriminative Random Fields. Pattern Recognition. Springer. 4713 224-233PDF icon Technical Report (872.46 KB)
Petra, S, Schröder, A, Wieneke, B and Schnörr, C (2008). On Sparsity Maximization in Tomographic Particle Image Reconstruction. Pattern Recognition -- 30th DAGM Symposium. Springer Verlag. 5096 294--303PDF icon Technical Report (1014.71 KB)
Lauer, F and Schnörr, C (2009). Spectral Clustering of Linear Subspaces for Motion Segmentation. Proc.~IEEE Int.~Conf.~Computer Vision (ICCV'09)PDF icon Technical Report (1.12 MB)
Lauer, F and Schnörr, C (2009). Spectral Clustering of Linear Subspaces for Motion Segmentation. Proceedings of the IEEE Conference on Computer Vision (ICCV 09) Kyoto, Japan, in press. 678-685
Schmidt, S, Kappes, J H, Bergtholdt, M, Pekar, V, Dries, S, Bystrov, D and Schnörr, C (2007). Spine Detection and Labeling Using a Parts-Based Graphical Model. Proc. 20th International Conference on Information Processing in Medical Imaging (IPMI 2007). Springer. 4584 122-133PDF icon Technical Report (1.46 MB)
Savchynskyy, B, Kappes, J H, Schmidt, S and Schnörr, C (2011). A Study of Nesterov's Scheme for Lagrangian Decomposition and MAP Labeling. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon Technical Report (408.99 KB)
Yuan, J, Schnörr, C, Steidl, G and Becker, F (2005). A Study of Non-Smooth Convex Flow Decomposition. Proc. Variational, Geometric and Level Set Methods in Computer Vision. Springer. 3752 1–12
Kappes, J H, Petra, S, Schnörr, C and Zisler, M (2015). TomoGC: Binary Tomography by Constrained Graph Cuts. Proc.~GCPRPDF icon Technical Report (2.46 MB)
Yuan, J, Schnörr, C and Steidl, G (2009). Total-Variation Based Piecewise Affine Regularization. Scale Space and Variational Methods in Computer Vision (SSVM 2009). Springer. 5567 552-564PDF icon Technical Report (478.04 KB)
Yuan, J, Schnörr, C and Steidl, G (2009). Total-Variation Based Piecewise Affine Regularization. Scale Space and Variational Methods in Computer Vision (SSVM 2009). Springer. 5567 552-564
Kappes, J H, Speth, M, Reinelt, G and Schnörr, C (2013). Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization. CVPR
Kappes, J H, Speth, M, Reinelt, G and Schnörr, C (2013). Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization. CVPRPDF icon Technical Report (623.84 KB)
Cremers, D, Sochen, N and Schnörr, C (2003). Towards Recognition-Based Variational Segmentation Using Shape Priors and Dynamic Labeling. Scale Space Methods in Computer Vision. Springer. 2695 388--400PDF icon Technical Report (451.82 KB)
Cremers, D, Sochen, N and Schnörr, C (2003). Towards Recognition-Based Variational Segmentation Using Shape Priors and Dynamic Labeling. Scale Space Methods in Computer Vision. Springer. 2695 388–400
Becker, F, Wieneke, B, Yuan, J and Schnörr, C (2008). A Variational Approach to Adaptive Correlation for Motion Estimation in Particle Image Velocimetry". Pattern Recognition -- 30th DAGM Symposium. 5096 335-344

Pages