Publications

Export 1925 results:
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G
Zeilmann, A, Savarino, F, Petra, S and Schnörr, C (2018). Geometric Numerical Integration of the Assignment Flow. preprint: arXiv. https://arxiv.org/abs/1810.06970
Schultz, M (1997). Geometrische Kalibrierung Von Ccd-Kameras. University of Heidelberg
Savchynskyy, B and Schmidt, S (2013). Getting Feasible Variable Estimates From Infeasible Ones: MRF Local Polytope Study. Workshop on Inference for Probabilistic Graphical Models at ICCV. Proceedings
Savchynskyy, B and Schmidt, S (2012). Getting Feasible Variable Estimates From Infeasible Ones: MRF Local Polytope Study. arXiv:1210.4081
Dierig, T (2002). Gewinnung von Tiefenkarten aus Fokusserien. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/2461
Michel, F, Kirillov, A, Brachmann, E, Krull, A, Gumhold, S, Savchynskyy, B and Rother, C (2017). Global hypothesis generation for 6D object pose estimation. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017-Janua 115–124. http://arxiv.org/abs/1612.02287
Savchynskyy, B, Kappes, J H, Swoboda, P and Schnörr, C (2013). Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation. NIPSPDF icon Technical Report (499.17 KB)
Savchynskyy, B, Kappes, J H, Swoboda, P and Schnörr, C (2013). Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation. NIPS. Proceedings. 1950-1958
Savchynskyy, B, Kappes, J Hendrik, Swoboda, P and Schnörr, C (2013). Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation. NIPS
Woodford, O J (2009). A Global Perspective on MAP Inference for Low-Level Vision Supplementary material to ICCV submission \# 1536. Optimization
He, K, Rhemann, C, Rother, C, Tang, X and Sun, J (2011). A global sampling method for alpha matting. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2049–2056
Schnörr, C, Stiehl, H - S and Grigat, R - R (1996). On Globally Asymptotically Stable Continuous-Time CNNs for Adaptive Smoothing of Multidimensional Signals. Proc. 4th IEEE Int. Workshop on Cellular Neural Networks and their Applications. Seville, Spain
Wanner, S and Goldlücke, B (2012). Globally Consistent Depth Labeling of 4D Light Fields. CVPR. Proceedings. 41-48
Wanner, S and Goldlücke, B (2012). Globally Consistent Depth Labeling of 4D Lightfields. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Wanner, S, Straehle, C N and Goldlücke, B (2013). Globally Consistent Multi-Label Assignment on the Ray Space of 4D Light Fields. CVPR 2013. Proceedings. 1011-1018
Wanner, S, Straehle, C N and Goldlücke, B (2013). Globally consistent multi-label assignment on the ray space of 4D light fields. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Andres, B, Kröger, T, Briggmann, K L, Denk, W, Norogod, N, Knott, G W, Köthe, U and Hamprecht, F A (2012). Globally Optimal Closed-Surface Segmentation for Connectomics. ECCV 2012. Proceedings, Part 3. 778-791PDF icon Technical Report (2.72 MB)
Kappes, J H, Speth, M, Andres, B, Reinelt, G and Schnörr, C (2011). Globally Optimal Image Partitioning by Multicuts. EMMCVPR. Springer. 31-44PDF icon Technical Report (7.3 MB)
Kappes, J H, Speth, M, Andres, B, Reinelt, G and Schnörr, C (2011). Globally Optimal Image Partitioning by Multicuts. EMMCVPR. SpringerPDF icon Technical Report (7.47 MB)
Kappes, J Hendrik, Speth, M, Andres, B, Reinelt, G and Schnörr, C (2011). Globally Optimal Image Partitioning by Multicuts. EMMCVPR. Springer
Schmitzer, B and Schnörr, C (2014). Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein ModesPDF icon Technical Report (2.9 MB)
Schmitzer, B and Schnörr, C (2015). Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein Modes. J.~Math.~Imag.~Vision. 52 436--458. http://link.springer.com/article/10.1007/s10851-014-0546-8PDF icon Technical Report (1.97 MB)
Schmitzer, B and Schnörr, C (2014). Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein Modes
Schmitzer, B and Schnörr, C (2015). Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein Modes. J. Math. Imag. Vision. 52 436–458. http://link.springer.com/article/10.1007/s10851-014-0546-8
Kostrykin, L, Schnörr, C and Rohr, K (2019). Globally Optimal Segmentation of Cell Nuclei in Fluoroscence Microscopy Images using Shape and Intensity Information. Medical Image Analysis. https://doi.org/10.1016/j.media.2019.101536
Heers, J, Schnörr, C and Stiehl, H S (2001). Globally–Convergent Iterative Numerical Schemes for Non–Linear Variational Image Smoothing and Segmentation on a Multi–Processor Machine. IEEE Trans. Image Proc. 10 852–864
Leue, C, Wenig, M, Jähne, B and Platt, U (1998). GOME mißt atmosphärische Stickoxide. Globale Biomassenverbrennung und Industrieemissionen. Physik in unserer Zeit. 29 179
Wenig, M (2001). GOME-Spurenstoffauswertung und Bildverarbeitung. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ.\ Heidelberg
Rother, C, Kolmogorov, V and Blake, A (2004). "GrabCut" - Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics. 23 309–314
Zisler, M, Savarino, F, Petra, S and Schnörr, C (2017). Gradient Flows on a Riemannian Submanifold for Discrete Tomography. Proc. GCPR
Beier, T (2014). Graph Based Image Analysis. University of Heidelberg
Vicente, S, Kolmogorov, V and Rother, C (2008). Graph cut based image segmentation with connectivity priors. 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
Haja, A (2008). Graph-based Spatial Motion Tracking using Affine-covariant Regions. IWR, Fakultät für Mathematik und Informatik, Univ.\ Heidelberg. http://www.ub.uni-heidelberg.de/archiv/8943
Abu Alhaija, H, Sellent, A, Kondermann, D and Rother, C (2015). Graphflow—6D large displacement scene flow via graph matching. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 9358 285–296
Schiegg, M, Hanslovsky, P, Haubold, C, Köthe, U, Hufnagel, L and Hamprecht, F A (2015). Graphical Model for Joint Segmentation and Tracking of Multiple Dividing Cell. Bioinformatics. 31 948-956. http://bioinformatics.oxfordjournals.org/content/early/2014/11/17/bioinformatics.btu764.full.pdf?keytype=ref&ijkey=mTXWsiFrci7R8tcPDF icon Technical Report (534.29 KB)

Pages