Publications

Export 1905 results:
Author Title Type [ Year(Asc)]
2018
Kostrykin, L, Schnörr, C and Rohr, K (2018). Segmentation of Cell Nuclei Using Intensity-Based Model Fitting and Sequential Convex Programming. Proc. ISBI
Kawetzki, D (2018). Semantic Segmentation Of Urban Scenes Using Deep Learning. Heidelberg University
Rahaman, N, Arpit, D, Baratin, A, Draxler, F, Lin, M, Hamprecht, F A, Bengio, Y and Courville, A (2018). On the spectral bias of deep neural networks. arXiv preprint arXiv:1806.08734
Sanakoyeu, A, Kotovenko, D, Lang, S and Ommer, B (2018). A Style-Aware Content Loss for Real-time HD Style Transfer. Proceedings of the European Conference on Computer Vision (ECCV) (Oral)
(2018). A Supplementary Material Cereals-Cost-Effective Region-Based Active Learning For Semantic Segmentation
Bredies, K, Holler, M, Storath, M and Weinmann, A (2018). Total Generalized Variation for Manifold-valued Data. SIAM Journal on Imaging Sciences. 11 1785 - 1848
Esser, P, Haux, J, Milbich, T and Ommer, B (2018). Towards Learning a Realistic Rendering of Human Behavior. European Conference on Computer Vision (ECCV - HBUGEN)
Schilling, H, Diebold, M, Rother, C and Jähne, B (2018). Trust your Model: Light Field Depth Estimation with Inline Occlusion Handling. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 4530–4538
Schilling, H, Diebold, M, Rother, C and Jähne, B (2018). Trust your Model: Light Field Depth Estimation with inline Occlusion Handling. CVPR. ProceedingsPDF icon Technical Report (5.46 MB)
Zern, A, Zisler, M, Aström, F, Petra, S and Schnörr, C (2018). Unsupervised Label Learning on Manifolds by Spatially Regularized Geometric Assignment. GCPR
Zern, A, Zisler, M, Aström, F, Petra, S and Schnörr, C (2018). Unsupervised Label Learning on Manifolds by Spatially Regularized Geometric Assignment. GCPR. Proceedings. 698-713PDF icon Technical Report (5.23 MB)
Esser, P, Sutter, E and Ommer, B (2018). A Variational U-Net for Conditional Appearance and Shape Generation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (short Oral). https://compvis.github.io/vunet/
Roth, N (2018). Visualization Of Near-Surface Flow Patterns For Air-Water Gas Transfer. Institut für Umweltphysik, Universität Heidelberg, Germany
Blum, O, Brattoli, B and Ommer, B (2018). X-GAN: Improving Generative Adversarial Networks with ConveX Combinations. German Conference on Pattern Recognition (GCPR) (Oral). Stuttgart, GermanyPDF icon Article (6.65 MB)PDF icon Supplementary material (7.96 MB)PDF icon Oral slides (14.96 MB)
2017
Vianello, A, Manfredi, G, Diebold, M and Jähne, B (2017). 3D reconstruction by a combined structure tensor and Hough transform light field approach. tm - Technisches Messen
Kandemir, M, Hamprecht, F A, Wojek, C and Schmidt, U (2017). Active machine learning for training an event classification. Patent, Patent Number WO2017032775 A1
Kunz, J (2017). Active Thermography as a Tool for the Estimation of Air-Water Transfer Velocities. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg. Dissertation
Hosseini Jafari, O, Groth, O, Kirillov, A, Yang, M Ying and Rother, C (2017). Analyzing modular CNN architectures for joint depth prediction and semantic segmentation. Proceedings - IEEE International Conference on Robotics and Automation. 4620–4627. http://arxiv.org/abs/1702.08009 http://dx.doi.org/10.1109/ICRA.2017.7989537
Holtmann, L Gerhard (2017). Aufbau Eines Aktiven Thermographiesystems Zur Messung Des Geschwindigkeitsgradienten In Der Windgetriebenen Wasserseitigen Viskosen Grenzschicht. Institut für Umweltphysik, Universität Heidelberg, Germany
Abu Alhaija, H, Mustikovela, S Karthik, Mescheder, L, Geiger, A and Rother, C (2017). Augmented reality meets deep learning for car instance segmentation in urban scenes. British Machine Vision Conference 2017, BMVC 2017
Behl, A, Hosseini Jafari, O, Mustikovela, S Karthik, Abu Alhaija, H, Rother, C and Geiger, A (2017). Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?. Proceedings of the IEEE International Conference on Computer Vision. 2017-Octob 2593–2602
Behl, A, Hosseini Jafari, O, Mustikovela, S Karthik, Abu Alhaija, H, Rother, C and Geiger, A (2017). Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?. Proceedings of the IEEE International Conference on Computer Vision. 2017-Octob 2593–2602
Flothow, L (2017). Bubble Characteristics From Breaking Waves In Fresh Water And Simulated Seawater. Institut für Umweltphysik, Universität Heidelberg, Germany
Brosowsky, M (2017). Cluster Resolving For Animal Tracking: Multi Hypotheses Tracking With Part Based Model For Object Hypotheses Generation And Pose Estimation. University of Heidelberg
Dalitz, R, Petra, S and Schnörr, C (2017). Compressed Motion Sensing. Proc. SSVM. Springer. 10302
Krause, G (2017). Correlation Of Performance And Entropy In Active Learning With Convolutional Neural Networks. Heidelberg University
Peter, S, Diego, F, Hamprecht, F A and Nadler, B (2017). Cost-efficient Gradient Boosting. NIPS, poster
Schlesinger, D, Jug, F, Myers, G, Rother, C and Kainmueller, D (2017). Crowd sourcing image segmentation with iaSTAPLE. Proceedings - International Symposium on Biomedical Imaging. 401–405
Ufer, N and Ommer, B (2017). Deep Semantic Feature Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon article (8.88 MB)
Bautista, M, Sanakoyeu, A and Ommer, B (2017). Deep Unsupervised Similarity Learning using Partially Ordered Sets. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon deep_unsupervised_similarity_learning_cvpr_2017_paper.pdf (905.82 KB)
Schilling, H, Diebold, M, Gutsche, M and Jähne, B (2017). On the design of a fractal calibration pattern for improved camera calibration. tm - Technisches Messen. 84 440–451
Ramos, S, Gehrig, S, Pinggera, P, Franke, U and Rother, C (2017). Detecting unexpected obstacles for self-driving cars: Fusing deep learning and geometric modeling. IEEE Intelligent Vehicles Symposium, Proceedings. 1025–1032. http://arxiv.org/abs/1612.06573
Haubold, C, Uhlmann, V, Unser, M and Hamprecht, F A (2017). Diverse M-best Solutions by Dynamic Programming. GCPR. Proceedings. Springer. LNCS 10496 255-267
Uhlmann, V, Haubold, C, Hamprecht, F A and Unser, M (2017). Diverse Shortest Paths for Bioimage Analysis. Bioinformatics. 1-3
Brachmann, E, Krull, A, Nowozin, S, Shotton, J, Michel, F, Gumhold, S and Rother, C (2017). DSAC - Differentiable RANSAC for camera localization. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017-Janua 2492–2500. http://arxiv.org/abs/1611.05705

Pages