V
N. Paragios, Faugeras, O., Chan, T., and Schnörr, C., Eds.,
“Variational, Geometric and Level Sets in Computer Vision (VLSM'05)”,
lncs, vol. 3752. Springer, Beijing, China, 2005.
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C.,
“Variational Image Denoising with Adaptive Constraint Sets”, in
LNCS, 2012, pp. 206-217.
Technical Report (649.03 KB) F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C.,
“Variational Image Denoising with Adaptive Constraint Sets”, in
Proceedings of the 3rd International Conference on Scale Space and Variational Methods in Computer Vision 2011, 2012, pp. 206-217.
F. Lenzen, Becker, F., Lellmann, J., Petra, S., and Schnörr, C.,
“Variational Image Denoising with Adaptive Constraint Sets”, in
Proceedings of the 3nd International Conference on Scale Space and
Variational Methods in Computer Vision 2011, in press, 2011, vol. 6667, pp. 206-217.
P. Swoboda and Schnörr, C.,
“Variational Image Segmentation and Cosegmentation with the Wasserstein Distance”, in
Energy Minimization Methods in Computer Vision and Pattern Recognition, 2013, vol. 8081, pp. 321–334.
P. Swoboda and Schnörr, C.,
“Variational Image Segmentation and Cosegmentation with the Wasserstein Distance”, in
Energy Minimization Methods in Computer Vision and Pattern Recognition, 2013, vol. 8081, p. 321--334.
Technical Report (8.06 MB) C. Schnörr,
“Variational Methods for Adaptive Image Smoothing and Segmentation”, in
Handbook on Computer Vision and Applications: Signal Processing and Pattern Recognition, San Diego, 1999, vol. 2, pp. 451–484.
A. Bruhn, Weickert, J., Feddern, C., Kohlberger, T., and Schnörr, C.,
“Variational optic flow computation in real-time”,
IEEE Trans. Image Proc., vol. 14, pp. 608–615, 2005.
A. Bruhn, Weickert, J., Feddern, C., Kohlberger, T., and Schnörr, C.,
“Variational Optic Flow Computation in Real-Time”, Dept. Math. and Comp. Science, Saarland University, Germany, 89, 2003.
P. Ruhnau, Kohlberger, T., Nobach, H., and Schnörr, C.,
“Variational Optical Flow Estimation for Particle Image Velocimetry”,
Proc. Lasermethoden in der Strömungsmeßtechnik. Deutsche Gesellschaft für Laser-Anemometrie GALA e.V., Karlsruhe, 2004.
P. Ruhnau, Kohlberger, T., Nobach, H., and Schnörr, C.,
“Variational Optical Flow Estimation for Particle Image Velocimetry”,
Experiments in Fluids, vol. 38, pp. 21–32, 2005.
P. Ruhnau, Kohlberger, T., Nobach, H., and Schnörr, C.,
“Variational Optical Flow Estimation for Particle Image Velocimetry”,
Experiments in Fluids, vol. 38, p. 21--32, 2005.
Technical Report (1.21 MB) C. Schnörr, Schüle, T., and Weber, S.,
“Variational Reconstruction with DC-Programming”,
Advances in Discrete Tomography and Its Applications. Birkhäuser, Boston, 2007.
F. Becker, Lenzen, F., Kappes, J. H., and Schnörr, C.,
“Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences”,
International Journal of Computer Vision, vol. 105, no. 3, p. 269--297, 2013.
Technical Report (15.4 MB) F. Becker, Lenzen, F., Kappes, J. H., and Schnörr, C.,
“Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences”, in
2011 IEEE International Conference on Computer Vision (ICCV), 2011, p. 1692 -- 1699.
Technical Report (4.9 MB) F. Becker, Lenzen, F., Kappes, J. H., and Schnörr, C.,
“Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences”,
International Journal of Computer Vision, vol. 105, pp. 269–297, 2013.
F. Becker, Lenzen, F., Kappes, J. H., and Schnörr, C.,
“Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences”, in
2011 IEEE International Conference on Computer Vision (ICCV), 2011, pp. 1692 – 1699.
F. Becker, Lenzen, F., Kappes, J. H., and Schnörr, C.,
“Variational Recursive Joint Estimation of Dense Scene Structure and
Camera Motion from Monocular High Speed Traffic Sequences”,
International Journal of Computer Vision, vol. 105 (3), pp. 269-297, 2013.
F. Becker, Lenzen, F., Kappes, J. H., and Schnörr, C.,
“Variational Recursive Joint Estimation of Dense Scene Structure and
Camera Motion from Monocular High Speed Traffic Sequences”, in
2011 IEEE International Conference on Computer Vision ICCV, 2011, pp. 1692-1699.
M. Bergtholdt, Cremers, D., and Schnörr, C.,
“Variational Segmentation with Shape Priors”,
Handbook of Mathematical Models in Computer Vision. Springer, pp. 147-160, 2005.
P. Esser, Sutter, E., and Ommer, B.,
“A Variational U-Net for Conditional Appearance and Shape Generation”, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (short Oral), 2018.
M. Kandemir, Haußmann, M., Diego, F., Rajamani, K., van der Laak, J., and Hamprecht, F. A.,
“Variational weakly-supervised Gaussian processes”,
BMVC. Proceedings. 2016.
Technical Report (3.28 MB) F. Raisch, Scharr, H., Kirchgeßner, N., Jähne, B., Fink, R. H. A., and Uttenweiler, D.,
“Velocity and feature estimation of actin filaments using active contours in noisy fluorescence image sequences”, in
Proc. 2nd IASTED Int. Conf. Visualization, Imaging and Image Processing, 2002, p. 645--650.
B. Antic and Ommer, B.,
“Video Parsing for Abnormality Detection”, in
Proceedings of the IEEE International Conference on Computer Vision, 2011, p. 2415--2422.
Technical Report (990.21 KB)