C
M. Kirchner, Renard, B. Y., Köthe, U., Pappin, D. J., Hamprecht, F. A., Steen, J. A. J., and Steen, H.,
“Computational Protein Profile Similarity Screening for Quantitative Mass Spectrometry Experiments”,
Bioinformatics, vol. 26 (1), pp. 77-83, 2010.
Technical Report (380.19 KB) M. Wulf, Stiehl, H. S., and Schnörr, C.,
“On the computational rôle of the primate retina”, in
Proc. 2nd ICSC Symposium on Neural Computation (NC 2000), Berlin, Germany, 2000.
P. Bell and Ommer, B.,
“Computer Vision und Kunstgeschichte — Dialog zweier Bildwissenschaften”, in
Computing Art Reader: Einführung in die digitale Kunstgeschichte, P. Kuroczyński et al. (ed.), 2018.
413-17-83318-2-10-20181210.pdf (2.98 MB) M. Hanselmann, Kirchner, M., Renard, B. Y., Amstalden, E. R., Glunde, K., Heeren, R. M. A., and Hamprecht, F. A.,
“Concise Representation of MS Images by Probabilistic Latent Semantic Analysis”,
Analytical Chemistry, vol. 80, pp. 9649-9658, 2008.
Technical Report (3.91 MB) A. Arnab, Zheng, S., Jayasumana, S., Romera-paredes, B., Kirillov, A., Savchynskyy, B., Rother, C., Kahl, F., and Torr, P.,
“Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation”,
Cvpr, vol. XX, pp. 1–15, 2018.
F. Kluger, Brachmann, E., Ackermann, H., Rother, C., Yang, M. Ying, and Rosenhahn, B.,
“CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus”, in
CVPR 2020, 2020.
PDF (9.95 MB) M. Schiegg, Hanslovsky, P., Kausler, B. X., Hufnagel, L., and Hamprecht, F. A.,
“Conservation Tracking”, in
ICCV 2013. Proceedings, 2013, p. 2928--2935.
Technical Report (5.22 MB) B. Jähne, Jähne, B., Haußecker, H., and Geißler, P.,
“Continuous and digital signals”,
Handbook of Computer Vision and Applications, vol. 2. Academic Press, p. 9--34, 1999.
K. Fundana, Heyden, A., Gosch, C., and Schnörr, C.,
“Continuous Graph Cuts for Prior-Based Object Segmentation”, in
19th Int.~Conf.~Patt.~Recog.~(ICPR), 2008, p. 1--4.
Technical Report (414.89 KB) J. Yuan, Steidl, G., and Schnörr, C.,
“Convex Hodge Decomposition of Image Flows”, in
Pattern Recognition -- 30th DAGM Symposium, 2008, vol. 5096, p. 416--425.
Technical Report (290.72 KB) J. Lellmann, Kappes, J. H., Yuan, J., Becker, F., and Schnörr, C.,
“Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation”, IWR, University of Heidelberg, 2008.
Technical Report (2.6 MB) J. Lellmann, Kappes, J. H., Yuan, J., Becker, F., and Schnörr, C.,
“Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation”, in
Scale Space and Variational Methods in Computer Vision (SSVM 2009), 2009, vol. 5567, pp. 150-162.
Technical Report (1.75 MB) J. Lellmann, Kappes, J. H., Yuan, J., Becker, F., Schnörr, C., Mórken, K., and Lysaker, M.,
“Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation”, in
Scale Space and Variational Methods in Computer Vision (SSVM 2009), 2009, vol. 5567, pp. 150-162.
J. Keuchel, Schellewald, C., Cremers, D., and Schnörr, C.,
“Convex Relaxations for Binary Image Partitioning and Perceptual Grouping”, in
Mustererkennung 2001, Munich, Germany, 2001, vol. 2191, pp. 353–360.
J. Yuan, Schnörr, C., Kohlberger, T., and Ruhnau, P.,
“Convex Set-Based Estimation of Image Flows”, in
ICPR 2004 – 17th Int. Conf. on Pattern Recognition, Cambridge, UK, 2004, vol. 1, pp. 124-127.