All Publications

2020

Rombach, R, Esser, P and Ommer, B (2020). Making Sense of CNNs: Interpreting Deep Representations & Their Invariances with INNs. IEEE European Conference on Computer Vision (ECCV). https://compvis.github.io/invariances/
Wolf, S, Hamprecht, F A and Funke, J (2020). Inpainting Networks Learn to Separate Cells in Microscopy Images. BMCV, in pressPDF icon Technical Report (357.23 KB)
Braun, S, Esser, P and Ommer, B (2020). Unsupervised Part Discovery by Unsupervised Disentanglement. Proceedings of the German Conference on Pattern Recognition (GCPR) (Oral). Tübingen. https://compvis.github.io/unsupervised-part-segmentation/
Bailoni, A, Pape, C, Wolf, S, Kreshuk, A and Hamprecht, F A (2020). Proposal-Free Volumetric Instance Segmentation from Latent Single-Instance Masks. GCPR, accepted. arXiv
Rombach, R, Esser, P and Ommer, B (2020). Network-to-Network Translation with Conditional Invertible Neural Networks. Neural Information Processing Systems (NeurIPS) (Oral). https://compvis.github.io/net2net/
Rombach, R, Esser, P and Ommer, B (2020). Network Fusion for Content Creation with Conditional INNs. CVPRW 2020 (AI for Content Creation). https://compvis.github.io/network-fusion/

2019

Li, W, Hosseini Jafari, O and Rother, C (2019). Deep Object Co-segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11363 LNCS 638–653
Brachmann, E and Rother, C (2019). Neural-guided RANSAC: Learning where to sample model hypotheses. Proceedings of the IEEE International Conference on Computer Vision. 2019-Octob 4321–4330. http://arxiv.org/abs/1905.04132PDF icon PDF (8.02 MB)
Haußmann, M, Gerwinn, S and Kandemir, M (2019). Bayesian Prior Networks with PAC Training. arXiv preprint arXiv:1906.00816
Brattoli, B, Roth, K and Ommer, B (2019). MIC: Mining Interclass Characteristics for Improved Metric Learning. Proceedings of the Intl. Conf. on Computer Vision (ICCV)
Kotovenko, D, Sanakoyeu, A, Lang, S and Ommer, B (2019). Content and Style Disentanglement for Artistic Style Transfer. Proceedings of the Intl. Conf. on Computer Vision (ICCV)
Esser, P, Haux, J and Ommer, B (2019). Unsupervised Robust Disentangling of Latent Characteristics for Image Synthesis. Proceedings of the Intl. Conf. on Computer Vision (ICCV). https://compvis.github.io/robust-disentangling/
Ufer, N, Lui, K To, Schwarz, K, Warkentin, P and Ommer, B (2019). Weakly Supervised Learning of Dense SemanticCorrespondences and Segmentation. German Conference on Pattern Recognition (GCPR)PDF icon article (6.1 MB)
Hehn, T M, Kooij, J F P and Hamprecht, F A (2019). End-to-End Learning of Decision Trees and Forests. International Journal of Computer Vision. 128 997-1011
Berg, S, Kutra, D, Kroeger, T, Straehle, C N, Kausler, B X, Haubold, C, Schiegg, M, Ales, J, Beier, T, Rudy, M, Eren, K, Cervantes, J I, Xu, B, Beuttenmüller, F, Wolny, A, Zhang, C, Köthe, U, Hamprecht, F A and Kreshuk, A (2019). ilastik: interactive machine learning for (bio)image analysis. Nature Methods. 16 1226-1232
Kiefer, L, Storath, M and Weinmann, A (2019). An efficient algorithm for the piecewise affine-linear Mumford-Shah model based on a Taylor jet splitting. IEEE Transactions on Image Processing. 29PDF icon Technical Report (2.04 MB)
Storath, M, Kiefer, L and Weinmann, A (2019). Smoothing for signals with discontinuities using higher order Mumford-Shah models. Numerische Mathematik. 143(2) 423-460PDF icon Technical Report (1.09 MB)
Esposito, M, Hennersperger, C, Göbl, R, Demaret, L, Storath, M, Navab, N, Baust, M and Weinmann, A (2019). Total variation regularization of pose signals with an application to 3D freehand ultrasound. IEEE Transactions on Medical Imaging. 38(10) 2245-2258
Kirschbaum, E (2019). Novel Machine Learning Approaches for Neurophysiological Data Analysis. Heidelberg University
Pandey, N (2019). Weakly Supervised Semantic Segmentation. Heidelberg University
Großkinsky, (2019). Synaptic Cleft Prediction On Electron Microsope Images. Heidelberg University
Snajder, R (2019). Pipeline Für Die Automatisierte Objektsegmentierung Von 3D Lightshet Mikroskopiebildern. Heidelberg University
Remme, R (2019). Instance Segmentation Via Associative Pixel Embeddings. Heidelberg University
Fita, E (2019). Semi-Supervised Distance-Based Segmentation. Heidelberg University
Hanslovsky, P (2019). Isotropic Reconstruction of Neural Morphology from Large Non-Isotropic 3D Electron MIcroscopy. Heidelberg University
Rathke, F and Schnörr, C (2019). Fast Multivariate Log-Concave Density Estimation. Comp. Statistics & Data Analysis. 140 41-58
Leistner, T, Schilling, H, Mackowiak, R, Gumhold, S and Rother, C (2019). Learning to Think Outside the Box: Wide-Baseline Light Field Depth Estimation with EPI-Shift. Proceedings - 2019 International Conference on 3D Vision, 3DV 2019. 249–257. http://arxiv.org/abs/1909.09059 http://dx.doi.org/10.1109/3DV.2019.00036PDF icon PDF (8.94 MB)
Kamann, C and Rother, C (2019). Benchmarking the Robustness of Semantic Segmentation Models. http://arxiv.org/abs/1908.05005
Censor, Y, Petra, S and Schnörr, C (2019). Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case. preprint: arXiv. https://arxiv.org/abs/1911.05498
Adler, T J, Ayala, L, Ardizzone, L, Kenngott, H G, Vemuri, A, Müller-Stich, B P, Rother, C, Köthe, U and Maier-Hein, L (2019). Out of Distribution Detection for Intra-operative Functional Imaging. MICCAI UNSURE Workshop 2019. 11840 LNCS 75–82PDF icon PDF (3.1 MB)
Abu Alhaija, H, Mustikovela, S Karthik, Geiger, A and Rother, C (2019). Geometric Image Synthesis. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11366 LNCS 85–100. https://youtu.be/W2tFCz9xJoU
Savchynskyy, B (2019). Discrete Graphical Models — An Optimization Perspective. Foundations and Trends® in Computer Graphics and Vision. Now Publishers. 11 160–429
Mackowiak, R, Lenz, P, Ghori, O, Diego, F, Lange, O and Rother, C (2019). CEREALS - Cost-Effective REgion-based Active Learning for Semantic Segmentation. British Machine Vision Conference 2018, BMVC 2018
Kruse, J, Ardizzone, L, Rother, C and Köthe, U (2019). Benchmarking Invertible Architectures On Inverse Problems
Ardizzone, L, Lüth, C, Kruse, J, Rother, C and Köthe, U (2019). Guided Image Generation with Conditional Invertible Neural Networks. http://arxiv.org/abs/1907.02392
Bhowmik, A, Gumhold, S, Rother, C and Brachmann, E (2019). Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task. http://arxiv.org/abs/1912.00623
Brachmann, E and Rother, C (2019). Expert sample consensus applied to camera re-localization. Proceedings of the IEEE International Conference on Computer Vision. 2019-Octob 7524–7533. http://arxiv.org/abs/1908.02484
Zisler, M, Zern, A, Petra, S and Schnörr, C (2019). Self-Assignment Flows for Unsupervised Data Labeling on Graphs. preprint: arXiv. https://arxiv.org/abs/1911.03472
Ardizzone, L, Lüth, C, Kruse, J, Rother, C and Köthe, U (2019). Guided Image Generation with Conditional Invertible Neural Networks. http://arxiv.org/abs/1907.02392
Li, W, Hosseini Jafari, O and Rother, C (2019). Localizing Common Objects Using Common Component Activation Map

Pages