All Publications

2020

Jähne, (2020). What controls air-sea gas exchange at extreme wind speeds? Evidence from laboratory experiments. Recent Advances in the Study of Oceanic Whitecaps. Springer. 133–150
Friman, S (2020). Laboratory investigations of concentration and wind profiles close to the wind-driven wavy water surface. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg, Heidelberg. Dissertation
Mustikovela, S K, Jampani, V, De Mello, S, Liu, S, Iqbal, U, Rother, C and Kautz, J (2020). Self-Supervised Viewpoint Learning From Image Collections. CONSAC. https://github.com/NVlabs/SSVPDF icon PDF (8.77 MB)
Schilling, H, Gutsche, M, Brock, A, Späth, D, Rother, C and Krispin, K (2020). Mind the Gap – A Benchmark for Dense Depth Prediction beyond Lidar. 2nd Workshop on Safe Artificial Intelligence for Automated Driving, in conjunction with CVPR 2020
Haller, S, Prakash, M, Hutschenreiter, L, Pietzsch, T, Rother, C, Jug, F, Swoboda, P and Savchynskyy, B (2020). A Primal-Dual Solver for Large-Scale Tracking-by-Assignment. AISTATS 2020PDF icon PDF (1.04 MB)
Roth, K, Milbich, T, Sinha, S, Gupta, P, Ommer, B and Cohen, J Paul (2020). Revisiting Training Strategies and Generalization Performance in Deep Metric Learning. International Conference on Machine Learning (ICML). https://arxiv.org/pdf/2002.08473.pdf
Milbich, T, Roth, K, Brattoli, B and Ommer, B (2020). Sharing Matters for Generalization in Deep Metric Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). https://arxiv.org/abs/2004.05582
Milbich, T, Roth, K and Ommer, B (2020). PADS: Policy-Adapted Sampling for Visual Similarity Learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1. https://arxiv.org/abs/2003.11113
Ardizzone, L, Mackowiak, R, Rother, C and Köthe, U (2020). Exact Information Bottleneck with Invertible Neural Networks: Getting the Best of Discriminative and Generative Modeling. http://arxiv.org/abs/2001.06448PDF icon PDF (2.87 MB)
Milbich, T, Ghori, O and Ommer, B (2020). Unsupervised Representation Learning by Discovering Reliable Image Relations. Pattern Recognition. 102. http://arxiv.org/abs/1911.07808
Schnörr, (2020). Assignment Flows. Handbook of Variational Methods for Nonlinear Geometric Data. Springer. 235—260. https://www.springer.com/gp/book/9783030313500
Censor, Y, Petra, S and Schnörr, C (2020). Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case. J. Appl. Numer. Optimization (in press; arXiv:1911.05498). 2 15-62. http://jano.biemdas.com/archives/1060
Zern, A, Zisler, M, Petra, S and Schnörr, C (2020). Unsupervised Assignment Flow: Label Learning on Feature Manifolds by Spatially Regularized Geometric Assignment. Journal of Mathematical Imaging and Vision. https://doi.org/10.1007/s10851-019-00935-7
Zern, A, Zeilmann, A and Schnörr, C (2020). Assignment Flows for Data Labeling on Graphs: Convergence and Stability. preprint: arXiv. https://arxiv.org/abs/2002.11571
Zeilmann, A, Savarino, F, Petra, S and Schnörr, C (2020). Geometric Numerical Integration of the Assignment Flow. Inverse Problems. 36 034004 (33pp)
Desana, M and Schnörr, C (2020). Sum-Product Graphical Models. Machine Learning. 109 135–173
Bollweg, S, Haußmann, M, Kasieczka, G, Luchmann, M, Plehn, T and Thompson, J (2020). Deep-Learning Jets with Uncertainties and More. SciPost Phys. 8. https://scipost.org/10.21468/SciPostPhys.8.1.006PDF icon Technical Report (1.65 MB)
Ufer, N, Lang, S and Ommer, B (2020). Object Retrieval and Localization in Large Art Collections Using Deep Multi-style Feature Fusion and Iterative Voting. IEEE European Conference on Computer Vision (ECCV), VISART Workshop PDF icon Paper (1.03 MB)
Haußmann, M, Gerwinn, S and Kandemir, M (2020). Bayesian Evidential Deep Learning with PAC Regularization . 3rd Symposium on Advances in Approximate Bayesian Inference
Dorkenwald, M, Büchler, U and Ommer, B (2020). Unsupervised Magnification of Posture Deviations Across Subjects. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon article.pdf (1.15 MB)
Lang, S and Ommer, B (2020). Das Objekt jenseits der Digitalisierung. Das digitale Objekt. 7. http://www.deutsches-museum.de/fileadmin/Content/010_DM/060_Verlag/studies-7.pdfPDF icon lang_ommer_digitalhumanities_2020_.pdf (599.56 KB)
Dencker, T, Klinkisch, P, Maul, S M and Ommer, B (2020). Deep learning of cuneiform sign detection with weak supervision using transliteration alignment. PLoS ONE. 15. https://hci.iwr.uni-heidelberg.de/compvis/projects/cuneiform
Esser, P, Rombach, R and Ommer, B (2020). A Note on Data Biases in Generative Models. NeurIPS 2020 Workshop on Machine Learning for Creativity and Design. https://arxiv.org/abs/2012.02516
Pape, C, Remme, R, Wolny, A, Olberg, S, Wolf, S, Cerrone, L, Cortese, M, Klaus, S, Lucic, B, Ullrich, S, Anders-Össwein, M, Wolf, S, Cerikan, B, Neufeldt, C J, Ganter, M, Schnitzler, P, Merle, U, Lusic, M, Boulant, S, Stanifer, M, Bartenschlager, R, Hamprecht, F A, Kreshuk, A, Tischer, C, Kräusslich, H - G, Müller, B and Laketa, V (2020). Microscopy-based assay for semi-quantitative detection of SARS-CoV-2 specific antibodies in human sera. BioEssays, in press
Rombach, R, Esser, P and Ommer, B (2020). Network Fusion for Content Creation with Conditional INNs. CVPRW 2020 (AI for Content Creation). https://compvis.github.io/network-fusion/
Rombach, R, Esser, P and Ommer, B (2020). Network-to-Network Translation with Conditional Invertible Neural Networks. Neural Information Processing Systems (NeurIPS) (Oral). https://compvis.github.io/net2net/
Bailoni, A, Pape, C, Wolf, S, Kreshuk, A and Hamprecht, F A (2020). Proposal-Free Volumetric Instance Segmentation from Latent Single-Instance Masks. GCPR. Springer. 12544 331-344
Braun, S, Esser, P and Ommer, B (2020). Unsupervised Part Discovery by Unsupervised Disentanglement. Proceedings of the German Conference on Pattern Recognition (GCPR) (Oral). Tübingen. https://compvis.github.io/unsupervised-part-segmentation/
Wolf, S, Hamprecht, F A and Funke, J (2020). Inpainting Networks Learn to Separate Cells in Microscopy Images. BMCV, in pressPDF icon Technical Report (357.23 KB)
Rombach, R, Esser, P and Ommer, B (2020). Making Sense of CNNs: Interpreting Deep Representations & Their Invariances with INNs. IEEE European Conference on Computer Vision (ECCV). https://compvis.github.io/invariances/
Wolf, S, Li, Y, Pape, C, Bailoni, A, Kreshuk, A and Hamprecht, F A (2020). The Semantic Mutex Watershed for Efficient Bottom-Up Semantic Instance Segmentation. ECCV. Proceedings. 208-224
Wolny, A, Cerrone, L, Vijayan, A, Tofanelli, R, A Barro, V, Louveaux, M, Wenzl, C, Steigleder, S, Pape, C, Bailoni, A, Duran-Nebreda, S, Bassel, G W, Lohmann, J U, Hamprecht, F A, Schneitz, K, Maizel, A and Kreshuk, A (2020). Accurate and versatile 3D segmentation of plant tissues at cellular resolution. eLife
Jähne, (2020). Struktur und Chaos: Kleinskalige Austauschprozesse zwischen Atmosphäre und Meer. Heidelberger Jahrbücher Online, Entwicklung – Wie aus Prozessen Strukturen werden. 5 133–150

2019

Savarino, F and Schnörr, C (2019). A Variational Perspective on the Assignment Flow. Proc. SSVM. Springer
Hühnerbein, R, Savarino, F, Petra, S and Schnörr, C (2019). Learning Adaptive Regularization for Image Labeling Using Geometric Assignment. Proc. SSVM. Springer
Adler, T J, Ayala, L, Ardizzone, L, Kenngott, H G, Vemuri, A, Müller-Stich, B P, Rother, C, Köthe, U and Maier-Hein, L (2019). Out of Distribution Detection for Intra-operative Functional Imaging. MICCAI UNSURE Workshop 2019. 11840 LNCS 75–82PDF icon PDF (3.1 MB)
Zisler, M, Zern, A, Petra, S and Schnörr, C (2019). Unsupervised Labeling by Geometric and Spatially Regularized Self-Assignment. Proc. SSVM. Springer
Bhowmik, A, Gumhold, S, Rother, C and Brachmann, E (2019). Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task. http://arxiv.org/abs/1912.00623
Rathke, F and Schnörr, C (2019). Fast Multivariate Log-Concave Density Estimation. Comp. Statistics & Data Analysis. 140 41–58
Desana, M and Schnörr, C (2019). Sum-Product Graphical Models. Machine Learning. https://doi.org/10.1007/s10994-019-05813-2

Pages