Publications

Export 1965 results:
Author Title Type [ Year(Desc)]
Filters: Filter is   [Clear All Filters]
2016
Kunz, J and Jähne, B (2016). Active thermography as a tool to investigate heat and gas transfer across the air-water interface. 13th Quantitative Infrared Thermographie Conference (QIRT 2016), Gdansk 4–8 July 2016
Proß, (2016). Analysis Of The Fetch Dependency Of The Slope Of Wind-Water Waves. Institut für Umweltphysik, Universität Heidelberg, Germany
Aström, F, Petra, S, Schmitzer, B and Schnörr, C (2016). The Assignment Manifold: A Smooth Model for Image Labeling. Proc. 2nd Int. Workshop on Differential Geometry in Computer Vision and Machine Learning (DIFF-CVML'16; oral presentation; Grenander best paper award)
Krasowski, N (2016). Automated Segmentation for Connectomics Utilizing Higher-Order Biological Priors. University of Heidelberg
Pape, C (2016). Automatic Segmentation Of Neurites From Anisotropic Em-Imaging. University of Heidelberg
Prange, T (2016). Automatic Segmentation Of Neurons In Electron Microscopy Data With Membrane Defects. University of Heidelberg
Mustikovela, S Karthik, Yang, M Ying and Rother, C (2016). Can ground truth label propagation from video help semantic segmentation?. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 9915 LNCS 804–820
Wolf, S (2016). Cell Tracking With Graphical Model Using Higher Order Features On Track Segments. University of Heidelberg
Bautista, M, Sanakoyeu, A, Sutter, E and Ommer, B (2016). CliqueCNN: Deep Unsupervised Exemplar Learning. Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS). MIT Press, Barcelona. https://arxiv.org/abs/1608.08792PDF icon Article (5.79 MB)
Baust, M, Weinmann, A, Wieczorek, M, Lasser, T, Storath, M and Navab, N (2016). Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging based on a Riemannian Manifold Approach. IEEE Transactions on Medical Imaging. 35 1972–1989PDF icon Technical Report (8.65 MB)
Royer, L A, Richmond, D L, Rother, C, Andres, B and Kainmueller, D (2016). Convexity shape constraints for image segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2016-Decem 402–410. http://arxiv.org/abs/1509.02122
Güssefeld, B, Honauer, K and Kondermann, D (2016). Creating Feasible Reflectance Data for Synthetic Optical Flow Datasets. Advances in Visual Computing - 12th International Symposium, {ISVC} 2016, Las Vegas, NV, USA, December 12-14, 2016, Proceedings, Part {I}
Honauer, K, Johannsen, O, Kondermann, D and Goldlücke, B (2016). A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields. Computer Vision - ACCV 2016 : 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part III. Springer, Cham
Schmidt, P (2016). Deep Learning For Bioimage Analysis. University of Heidelberg
Balles, L (2016). Deep Learning For Diabetic Retinopathy Diagnostics. University of Heidelberg
Kleesiek, J, Urban, G, Hubert, A, Schwarz, D, Maier-Hein, K, Bendszus, M and Biller, A (2016). Deep MRI brain extraction: A 3D convolutional neural network for skull stripping.. NeuroImage. 129 460-469PDF icon Technical Report (1.14 MB)
Bell, P and Ommer, B (2016). Digital Connoisseur? How Computer Vision Supports Art History. Connoisseurship nel XXI secolo. Approcci, Limiti, Prospettive, A. Aggujaro & S. Albl (ed.). Artemide, Rome
Zisler, M, Petra, S, Schnörr, C and Schnörr, C (2016). Discrete Tomography by Continuous Multilabeling Subject to Projection Constraints. Proc. GCPR
Aström, F and Schnörr, C (2016). Double-Opponent Vectorial Total Variation. Proc. ECCV
Swoboda, P, Kuske, J and Savchynskyy, B (2016). A Dual Ascent Framework for Lagrangean Decomposition of Combinatorial Problems. arXiv, preprint. https://arxiv.org/pdf/1612.05460.pdf
Beier, T, Andres, B, Köthe, U and Hamprecht, F A (2016). An Efficient Fusion Move Algorithm for the Minimum Cost Lifted Multicut Problem. ECCV. Proceedings. Springer. LNCS 9906 715-730PDF icon Technical Report (4.89 MB)
Desana, M and Schnörr, C (2016). Expectation Maximization for Sum-Product Networks as Exponential Family Mixture Models. http://arxiv.org/abs/1604.07243
Schilling, H, Diebold, M, Gutsche, M, Aziz-Ahmad, H and Jähne, B (2016). A fractal calibration pattern for improved camera calibration. Forum Bildverarbeitung. https://doi.org/10.5445/KSP/1000059899
von Borstel, M, Kandemir, M, Schmidt, P, Rao, M, Rajamani, K and Hamprecht, F A (2016). Gaussian process density counting from weak supervision. ECCV. Proceedings. Springer. LNCS 9905 365-380 PDF icon Technical Report (1.71 MB)
Haubold, C, Ales, J, Wolf, S and Hamprecht, F A (2016). A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets. ECCV. Proceedings. Springer. LNCS 9911 566-582PDF icon Technical Report (1.18 MB)
Aström, F and Schnörr, C (2016). A Geometric Approach to Color Image Regularization. https://arxiv.org/abs/1605.05977
Aström, F, Petra, S, Schmitzer, B and Schnörr, C (2016). A Geometric Approach to Image Labeling. Proc. ECCV
Kondermann, D, Nair, R, Honauer, K, Krispin, K, Andrulis, J, Brock, A, Güssefeld, B, Rahimimoghaddam, M, Hofmann, S, Brenner, C and Jähne, B (2016). The HCI Benchmark Suite: Stereo and Flow Ground Truth With Uncertainties for Urban Autonomous Driving. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
Diebold, M, Gatto, A and Jähne, B (2016). Heterogeneous Light Fields. 2016 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2016, Las Vegas, NV, USA, June 27-30, 2016. http://dx.doi.org/10.1109/CVPR.2016.193
Kappes, J, Speth, M, Reinelt, G and Schnörr, C (2016). Higher-order Segmentation via Multicuts. Comp. Vision Image Understanding. 143 104–119
Aström, F, Petra, S, Schmitzer, B and Schnörr, C (2016). Image Labeling by Assignment. http://arxiv.org/abs/1603.05285
Meijering, E, Carpenter, A E, Peng, H, Hamprecht, F A and Olivo-Marin, J (2016). Imagining the future of bioimage analysis. Nature Biotechnology. 34 1250-1255PDF icon Technical Report (924.57 KB)
Censor, Y, Gibali, A, Lenzen, F and Schnörr, C (2016). The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising. J. Comp. Math. 34 608-623
Biller, A, Badde, S, Nagel, A, Neumann, J O, Wick, W, Hertenstein, A, Bendszus, M, Sahm, F, Benkhedah, N and Kleesiek, J (2016). Improved Brain Tumor Classification by Sodium MR Imaging: Prediction of IDH Mutation Status and Tumor Progression. American Journal of Neuroradiology. 37 66-73
Mund, J, Michel, F, Dieke-Meier, F, Fricke, H, Meyer, L and Rother, C (2016). Introducing LiDAR Point Cloud-based Object Classification for Safer Apron Operations. International Symposium on Enhanced Solutions for Aircraft and Vehicle Surveillance Applications. https://goo.gl/28Yoqh

Pages