Publications

Export 54 results:
Author Title [ Type(Desc)] Year
Filters: Author is Jörg H. Kappes  [Clear All Filters]
Conference Paper
T. Kröger, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Asymmetric Cuts: Joint Image Labeling and Partitioning, in Pattern Recognition - 36th German Conference, {GCPR} 2014, Münster, Germany, September 2-5, 2014, Proceedings, 2014.PDF icon Technical Report (3.46 MB)
J. H. Kappes, Savchynskyy, B., and Schnörr, C., A Bundle Approach To Efficient MAP-Inference by Lagrangian Relaxation, in CVPR. Proceedings, 2012, pp. 1688-1695.
J. H. Kappes, Savchynskyy, B., and Schnörr, C., A Bundle Approach To Efficient MAP-Inference by Lagrangian Relaxation, in CVPR, 2012.PDF icon Technical Report (430.63 KB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Lellmann, J., Komodakis, N., and Rother, C., A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problem, in CVPR, 2013.PDF icon Technical Report (1.35 MB)
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Sungwoong, K., Kausler, B. X., Lellmann, J., Komodakis, N., and Rother, C., A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems, in CVPR 2013. Proceedings, 2013.PDF icon Technical Report (1.35 MB)
J. Lellmann, Kappes, J. H., Yuan, J., Becker, F., and Schnörr, C., Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation, in Scale Space and Variational Methods in Computer Vision (SSVM 2009), 2009, vol. 5567, pp. 150-162.PDF icon Technical Report (1.75 MB)
J. Lellmann, Kappes, J. H., Yuan, J., Becker, F., Schnörr, C., Mórken, K., and Lysaker, M., Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation, in Scale Space and Variational Methods in Computer Vision (SSVM 2009), 2009, vol. 5567, pp. 150-162.
T. Beier, Kröger, T., Kappes, J. H., Köthe, U., and Hamprecht, F. A., Cut, Glue and Cut: A Fast, Approximate Solver for Multicut Partitioning, in 2014 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2014, Columbus, OH, USA, June 23-28, 2014, 2014.PDF icon Technical Report (10.06 MB)
B. Savchynskyy, Schmidt, S., Kappes, J. H., and Schnörr, C., Efficient MRF Energy Minimization via Adaptive Diminishing Smoothing, in UAI 2012, 2012.PDF icon Technical Report (529 KB)
B. Andres, Kappes, J. H., Köthe, U., Schnörr, C., and Hamprecht, F. A., An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM, in Pattern Recognition, Proc.~32th DAGM Symposium, 2010, pp. 353-362.
B. Andres, Kappes, J. H., Köthe, U., Schnörr, C., and Hamprecht, F. A., An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM, in Pattern Recognition, Proc.~32th DAGM Symposium, 2010.PDF icon Technical Report (218.43 KB)
S. Schmidt, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Evaluation of a First-Order Primal-Dual Algorithm for MRF Energy Minimization, in EMMCVPR 2011, 2011, vol. 6819, pp. 89-103.
S. Schmidt, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Evaluation of a First-Order Primal-Dual Algorithm for MRF Energy Minimization, in EMMCVPR, 2011, vol. 6819, pp. 89-103.PDF icon Technical Report (684.13 KB)
T. Beier, Hamprecht, F. A., and Kappes, J. H., Fusion Moves for Correlation Clustering, in CVPR. Proceedings, 2015, pp. 3507-3516.PDF icon Technical Report (1.19 MB)
B. Savchynskyy, Kappes, J. H., Swoboda, P., and Schnörr, C., Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation, in NIPS, 2013.PDF icon Technical Report (499.17 KB)
B. Savchynskyy, Kappes, J. H., Swoboda, P., and Schnörr, C., Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation, in NIPS. Proceedings, 2013, pp. 1950-1958.
J. H. Kappes, Speth, M., Andres, B., Reinelt, G., and Schnörr, C., Globally Optimal Image Partitioning by Multicuts, in EMMCVPR, 2011, pp. 31-44.PDF icon Technical Report (7.3 MB)
J. H. Kappes, Speth, M., Andres, B., Reinelt, G., and Schnörr, C., Globally Optimal Image Partitioning by Multicuts, in EMMCVPR, 2011.PDF icon Technical Report (7.47 MB)
R. Karim, Bergtholdt, M., Kappes, J. H., and Schnörr, C., Greedy-Based Design of Sparse Two-Stage SVMs for Fast Classification, in Pattern Recognition -- 29th DAGM Symposium, 2007, vol. 4713, pp. 395-404.PDF icon Technical Report (491.56 KB)
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., The Lazy Flipper: Efficient Depth-limited Exhaustive Search in Discrete Graphical Models, in ECCV 2012, 2012.PDF icon Technical Report (532.64 KB)
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., The Lazy Flipper: Efficient Depth-Limited Exhaustive Search in Discrete Graphical Models, in Computer Vision - {ECCV} 2012 - 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part {VII}, 2012.PDF icon Technical Report (446.28 KB)
J. H. Kappes and Schnörr, C., MAP-Inference for Highly-Connected Graphs with DC-Programming, in Pattern Recognition -- 30th DAGM Symposium, 2008, vol. 5096, p. 1--10.PDF icon Technical Report (1.91 MB)
J. H. Kappes, Beier, T., and Schnörr, C., MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves, in Computer Vision - {ECCV} 2014 Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part {II}, 2014.PDF icon Technical Report (557.49 KB)
J. H. Kappes, Schmidt, S., and Schnörr, C., MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation, in European Conference on Computer Vision (ECCV), 2010, vol. 6313, p. 735--747.PDF icon Technical Report (1.49 MB)
J. H. Kappes, Schmidt, S., and Schnörr, C., MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation, in European Conference on Computer Vision (ECCV), 2010, vol. 6313, p. 735--747.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality by Pruning for MAP-inference with General Graphical Models, in IEEE Conference on Computer Vision and Pattern Recognition 2014, 2014.PDF icon Technical Report (703.34 KB)
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Scale Space and Variational Methods (SSVM 2013), 2013.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Scale Space and Variational Methods (SSVM 2013), 2013.PDF icon Technical Report (159.71 KB)
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Partial Optimality via Iterative Pruning for the Potts Model, in Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision SSVM, 2013, pp. 477-488.
P. Swoboda, Savchynskyy, B., Kappes, J. H., and Schnörr, C., Persistency by Pruning for General Graphical Models, in submitted to NIPS 2013., 2013.
J. H. Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C., Probabilistic Correlation Clustering and Image Partitioning Using Perturbed Multicuts, in Proc.~SSVM, 2015.PDF icon Technical Report (1.1 MB)
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Probabilistic Image Segmentation with Closedness Constraints, in ICCV, Proceedings, 2011, pp. 2611 - 2618.PDF icon Technical Report (8.18 MB)
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Probabilistic Image Segmentation with Closedness Constraints, in Proceedings of ICCV, 2011.
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., Probabilistic Image Segmentation with Closedness Constraints, in Proceedings of ICCV, 2011.PDF icon Technical Report (2.95 MB)
S. Schmidt, Kappes, J. H., Bergtholdt, M., Pekar, V., Dries, S., Bystrov, D., and Schnörr, C., Spine Detection and Labeling Using a Parts-Based Graphical Model, in Proc. 20th International Conference on Information Processing in Medical Imaging (IPMI 2007), 2007, vol. 4584, pp. 122-133.PDF icon Technical Report (1.46 MB)

Pages