Publications

Export 114 results:
Author [ Title(Asc)] Type Year
Filters: Author is Björn Ommer  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
Antic, B and Ommer, B (2012). Robust Multiple-Instance Learning with Superbags. Proceedings of the Aian Conference on Computer Vision (ACCV) (Oral). Springer. 242--255PDF icon Technical Report (319.58 KB)
Roth, K, Milbich, T, Sinha, S, Gupta, P, Ommer, B and Cohen, J Paul (2020). Revisiting Training Strategies and Generalization Performance in Deep Metric Learning. International Conference on Machine Learning (ICML). https://arxiv.org/pdf/2002.08473.pdf
Kotovenko, D, Wright, M, Heimbrecht, A and Ommer, B (2021). Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://compvis.github.io/brushstroke-parameterized-style-transfer/
Rubio, J C and Ommer, B (2015). Regularizing Max-Margin Exemplars by Reconstruction and Generative Models. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 4213--4221PDF icon Technical Report (2.8 MB)
Lang, S and Ommer, B (2018). Reflecting on How Artworks Are Processed and Analyzed by Computer Vision. European Conference on Computer Vision (ECCV - VISART). Springer
Monroy, A, Carque, B and Ommer, B (2011). Reconstructing the Drawing Process of Reproductions from Medieval Images. Proceedings of the International Conference on Image Processing. IEEE. 2974--2977. https://hciweb.iwr.uni-heidelberg.de/compvis/research/manesse/PDF icon Technical Report (2.43 MB)
Lang, S and Ommer, B (2018). Reconstructing Histories: Analyzing Exhibition Photographs with Computational Methods. Arts, Computational Aesthetics. 7, 64PDF icon arts-07-00064.pdf (4.6 MB)
Yarlagadda, P, Monroy, A, Carque, B and Ommer, B (2010). Recognition and Analysis of Objects in Medieval Images. Proceedins of the Aian Conference on Computer Vision, Workshop on e-Heritage. Springer. 296--305PDF icon Technical Report (2.76 MB)
Eigenstetter, A, Takami, M and Ommer, B (2014). Randomized Max-Margin Compositions for Visual Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 3590--3597PDF icon Technical Report (8.01 MB)
L
Brattoli, B, Büchler, U, Wahl, A - S, Schwab, M E and Ommer, B (2017). LSTM Self-Supervision for Detailed Behavior Analysis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (BB and UB contributed equally)PDF icon Article (8.75 MB)
Antic, B, Milbich, T and Ommer, B (2013). Less is More: Video Trimming for Action Recognition. Proceedings of the IEEE International Conference on Computer Vision, Workshop on Understanding Human Activities: Context and Interaction. IEEE. 515--521PDF icon Technical Report (984.89 KB)
Bautista, M, Fuchs, P and Ommer, B (2017). Learning Where to Drive by Watching Others. Proceedings of the German Conference Pattern Recognition. Springer-Verlag, Basel. 1
Ommer, B, Sauter, M and M., B J (2006). Learning Top-Down Grouping of Compositional Hierarchies for Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Workshop on Perceptual Organization in Computer Vision. IEEE. 194--194PDF icon Technical Report (358.98 KB)
Ghori, O, Mackowiak, R, Bautista, M, Beuter, N, Drumond, L, Diego, F and Ommer, B (2018). Learning to Forecast Pedestrian Intention from Pose Dynamics. Intelligent Vehicles, IEEE, 2018
Ommer, B and Buhmann, J M (2007). Learning the Compositional Nature of Visual Objects. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 1--8PDF icon Technical Report (2.78 MB)
Ommer, B and Buhmann, J M (2010). Learning the Compositional Nature of Visual Object Categories for Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE. 32 501--516PDF icon Technical Report (2.78 MB)

Pages