Publications

Export 82 results:
Author [ Title(Desc)] Type Year
Filters: First Letter Of Last Name is Z  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Zern, A, Zeilmann, A and Schnörr, C (2020). Assignment Flows for Data Labeling on Graphs: Convergence and Stability. preprint: arXiv. https://arxiv.org/abs/2002.11571
Zern, A, Zeilmann, A and Schnörr, C (2020). Assignment Flows for Data Labeling on Graphs: Convergence and Stability. preprint: arXiv. https://arxiv.org/abs/2002.11571
Wahl, A - S, Omlor, W, Rubio, J C, Chen, J L, Zheng, H, Schröter, A, Gullo, M, Weinmann, O, Kobayashi, K, Helmchen, F, Ommer, B and Schwab, M E (2014). Asynchronous Therapy Restores Motor Control by Rewiring of the Rat Corticospinal Tract after Stroke. Science. American Association for The Advancement of Science. 344 1250--1255. http://www.sciencemag.org/content/344/6189/1250
Kelm, B Michael, Menze, B H, Zechmann, C M, Baudendistel, K T and Hamprecht, F A (2007). Automated Estimation of Tumor Probability in Prostate MRSI: Pattern Recognition vs. Quantification. Magnetic Resonance in Medicine. 57 150-159PDF icon Technical Report (348.05 KB)
Zechmann, C M, Menze, B H, Kelm, B Michael, Zamecnik, P, Ikinger, U, Waldherr, R, Delorme, S, Hamprecht, F A and Bachert, P (2012). Automated vs. manual pattern recognition of 3D 1H MRSI data of patients with prostate cancer. Academic Radiology. 19, 6 675-684
Zechmann, C M, Menze, B H, Kelm, B Michael, Zamecnik, P, Ikinger, U, Waldherr, R, Delorme, S, Hamprecht, F A and Bachert, P (2012). Automated vs. manual pattern recognition of 3D 1H MRSI data of patients with prostate cancer. Academic Radiology. 19, 6 675-684
B
Weber, S, Schüle, T, Hornegger, J and Schnörr, C (2004). Binary Tomography by Iterating Linear Programs from Noisy Projections. Combinatorial Image Analysis, Proc. Int. Workshop on Combinatorial Image Analysis (IWCIA'04). Springer Verlag. 3322 38–51
Hodaň, T, Michel, F, Brachmann, E, Kehl, W, Buch, A Glent, Kraft, D, Drost, B, Vidal, J, Ihrke, S, Zabulis, X, Sahin, C, Manhardt, F, Tombari, F, Kim, T Kyun, Matas, J and Rother, C (2018). BOP: Benchmark for 6D object pose estimation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11214 LNCS 19–35. http://arxiv.org/abs/1808.08319
C
Zechmann, C M, Kelm, B Michael, Zamecnik, P, Ikinger, U, Waldherr, R, Röll, S, Delorme, S, Hamprecht, F A and Bachert, P (2006). Can man still beat the machine? Automated vs. manual pattern recognition of 3D MRSI data of prostate cancer patients. Proceedings of the 16th ISMRMPDF icon Technical Report (664.38 KB)
Zechmann, C M, Kelm, B Michael, Zamecnik, P, Ikinger, U, Waldherr, R, Röll, S, Delorme, S, Hamprecht, F A and Bachert, P (2006). Can man still beat the machine? Automated vs. manual pattern recognition of 3D MRSI data of prostate cancer patients. Proceedings of the 16th ISMRMPDF icon Technical Report (664.38 KB)
Zhang, C, Yarkony, J and Hamprecht, F A (2014). Cell detection and segmentation using correlation clustering. MICCAI. Proceedings. Springer. 9-16PDF icon Technical Report (8.06 MB)
Kelm, B Michael, Menze, B H, Neff, T, Zechmann, C M and Hamprecht, F A (2006). CLARET: a tool for fully automated evaluation of MRSI with pattern recognition methods.. Bildverarbeitung für die Medizin 2006 - Algorithmen, Systeme, Anwendungen. Springer. 51-55. http://www.efmi-wg-mip.net/service/bvm2006PDF icon Technical Report (275.25 KB)
Kaster, F O, Kelm, B Michael, Zechmann, C M, Weber, M - A, Hamprecht, F A and Nix, O (2009). Classification of Spectroscopic Images in the DIROlab Environment. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany. Springer. 25/V 252--255PDF icon Technical Report (145.73 KB)
Szeliski, R, Zabih, R, Scharstein, D, Veksler, O, Kolmogorov, V, Agarwala, A, Tappen, M and Rother, C (2008). A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Transactions on Pattern Analysis and Machine Intelligence. Springer-Verlag. 30 1068–1080. http://vision.middlebury.edu/MRF.
Szeliski, R, Zabih, R, Scharstein, D, Veksler, O, Kolmogorov, V, Agarwala, A, Tappen, M and Rother, C (2008). A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Transactions on Pattern Analysis and Machine Intelligence. 30 1068–1080
Weber, C, Zechmann, C M, Kelm, B Michael, Zamecnik, R, Hendricks, D, Waldherr, R, Hamprecht, F A, Delorme, S, Bachert, P and Ikinger, U (2007). Comparison of correctness of manuel and automatic evaluation of MR-spectrum with prostrate cancer. Der Urologe. 46 1252
Weber, C, Zechmann, C M, Kelm, B Michael, Zamecnik, R, Hendricks, D, Waldherr, R, Hamprecht, F A, Delorme, S, Bachert, P and Ikinger, U (2007). Comparison of correctness of manuel and automatic evaluation of MR-spectrum with prostrate cancer. Der Urologe. 46 1252
Arnab, A, Zheng, S, Jayasumana, S, Romera-paredes, B, Kirillov, A, Savchynskyy, B, Rother, C, Kahl, F and Torr, P (2018). Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation. Cvpr. XX 1–15. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.8889&rep=rep1&type=pdf%0Ahttp://dx.doi.org/10.1109/CVPR.2012.6248050

Pages