All Publications

2020

Wolf, S, Bailoni, A, Pape, C, Rahaman, N, Kreshuk, A, Köthe, U and Hamprecht, F A (2020). The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph Partitioning. IEEE Transactions on Pattern Analysis and Machine Intelligence. 43 3724-3738PDF icon Technical Report (2.58 MB)
Krull, A, Hirsch, P, Rother, C, Schiffrin, A and Krull, C (2020). Artificial-intelligence-driven scanning probe microscopy. Communications Physics. 3
Kamann, C and Rother, C (2020). Benchmarking the Robustness of Semantic Segmentation Models. CVPR 2020. http://arxiv.org/abs/1908.05005PDF icon PDF (3.61 MB)
Bhowmik, A, Gumhold, S, Rother, C and Brachmann, E (2020). Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task. CVPR 2020 (oral). http://arxiv.org/abs/1912.00623PDF icon PDF (2.74 MB)
Radev, S T, Mertens, U K, Voss, A, Ardizzone, L and Köthe, U (2020). BayesFlow: Learning complex stochastic models with invertible neural networks. http://arxiv.org/abs/2003.06281PDF icon PDF (5.36 MB)
Mustikovela, S K, Jampani, V, De Mello, S, Liu, S, Iqbal, U, Rother, C and Kautz, J (2020). Self-Supervised Viewpoint Learning From Image Collections. CONSAC. https://github.com/NVlabs/SSVPDF icon PDF (8.77 MB)
Sorrenson, P, Rother, C and Köthe, U (2020). Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN). Intl. Conf. Learning Representations (ICLR). http://arxiv.org/abs/2001.04872PDF icon PDF (2.43 MB)
Schilling, H, Gutsche, M, Brock, A, Späth, D, Rother, C and Krispin, K (2020). Mind the Gap – A Benchmark for Dense Depth Prediction beyond Lidar. 2nd Workshop on Safe Artificial Intelligence for Automated Driving, in conjunction with CVPR 2020
Tourani, S, Shekhovtsov, A, Rother, C and Savchynskyy, B (2020). Taxonomy of Dual Block-Coordinate Ascent Methods for Discrete Energy Minimization. AISTATS 2020. https://gitlab.com/PDF icon PDF (2.58 MB)
Kluger, F, Brachmann, E, Ackermann, H, Rother, C, Yang, M Ying and Rosenhahn, B (2020). CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus. CVPR 2020. http://arxiv.org/abs/2001.02643PDF icon PDF (9.95 MB)
Haller, S, Prakash, M, Hutschenreiter, L, Pietzsch, T, Rother, C, Jug, F, Swoboda, P and Savchynskyy, B (2020). A Primal-Dual Solver for Large-Scale Tracking-by-Assignment. AISTATS 2020PDF icon PDF (1.04 MB)
Ardizzone, L, Mackowiak, R, Rother, C and Köthe, U (2020). Exact Information Bottleneck with Invertible Neural Networks: Getting the Best of Discriminative and Generative Modeling. http://arxiv.org/abs/2001.06448PDF icon PDF (2.87 MB)

2019

Hosseini Jafari, O, Mustikovela, S Karthik, Pertsch, K, Brachmann, E and Rother, C (2019). iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11363 LNCS 477–492
Kleesiek, J, Morshuis, J Nikolas, Isensee, F, Deike-Hofmann, K, Paech, D, Kickingereder, P, Köthe, U, Rother, C, Forsting, M, Wick, W, Bendszus, M, Schlemmer, H Peter and Radbruch, A (2019). Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study. Investigative Radiology. 54 653–660
Savchynskyy, B (2019). Discrete Graphical Models — An Optimization Perspective. Foundations and Trends® in Computer Graphics and Vision. Now Publishers. 11 160–429
Li, W, Hosseini Jafari, O and Rother, C (2019). Deep Object Co-segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11363 LNCS 638–653
Kruse, J, Ardizzone, L, Rother, C and Köthe, U (2019). Benchmarking Invertible Architectures On Inverse Problems
Kamann, C and Rother, C (2019). Benchmarking the Robustness of Semantic Segmentation Models. http://arxiv.org/abs/1908.05005
Li, W, Hosseini Jafari, O and Rother, C (2019). Localizing Common Objects Using Common Component Activation Map
Ardizzone, L, Lüth, C, Kruse, J, Rother, C and Köthe, U (2019). Guided Image Generation with Conditional Invertible Neural Networks. http://arxiv.org/abs/1907.02392
Bhowmik, A, Gumhold, S, Rother, C and Brachmann, E (2019). Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task. http://arxiv.org/abs/1912.00623
Leistner, T, Schilling, H, Mackowiak, R, Gumhold, S and Rother, C (2019). Learning to Think Outside the Box: Wide-Baseline Light Field Depth Estimation with EPI-Shift. Proceedings - 2019 International Conference on 3D Vision, 3DV 2019. 249–257. http://arxiv.org/abs/1909.09059 http://dx.doi.org/10.1109/3DV.2019.00036PDF icon PDF (8.94 MB)
Ardizzone, L, Lüth, C, Kruse, J, Rother, C and Köthe, U (2019). Guided Image Generation with Conditional Invertible Neural Networks. http://arxiv.org/abs/1907.02392
Abu Alhaija, H, Mustikovela, S Karthik, Geiger, A and Rother, C (2019). Geometric Image Synthesis. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11366 LNCS 85–100. https://youtu.be/W2tFCz9xJoU
Mackowiak, R, Lenz, P, Ghori, O, Diego, F, Lange, O and Rother, C (2019). CEREALS - Cost-Effective REgion-based Active Learning for Semantic Segmentation. British Machine Vision Conference 2018, BMVC 2018
Adler, T J, Ayala, L, Ardizzone, L, Kenngott, H G, Vemuri, A, Müller-Stich, B P, Rother, C, Köthe, U and Maier-Hein, L (2019). Out of Distribution Detection for Intra-operative Functional Imaging. MICCAI UNSURE Workshop 2019. 11840 LNCS 75–82PDF icon PDF (3.1 MB)
Brachmann, E and Rother, C (2019). Expert sample consensus applied to camera re-localization. Proceedings of the IEEE International Conference on Computer Vision. 2019-Octob 7524–7533. http://arxiv.org/abs/1908.02484
Brachmann, E and Rother, C (2019). Neural-guided RANSAC: Learning where to sample model hypotheses. Proceedings of the IEEE International Conference on Computer Vision. 2019-Octob 4321–4330. http://arxiv.org/abs/1905.04132PDF icon PDF (8.02 MB)

2018

Shekhovtsov, A, Swoboda, P and Savchynskyy, B (2018). Maximum Persistency via Iterative Relaxed Inference in Graphical Models. IEEE Transactions on Pattern Analysis and Machine Intelligence. 40 1668–1682. http://www.icg.tugraz.at/
Tourani, S, Shekhovtsov, A, Rother, C and Savchynskyy, B (2018). MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical Models. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11208 LNCS 264–281
Abu Alhaija, H, Mustikovela, S Karthik, Mescheder, L, Geiger, A and Rother, C (2018). Augmented Reality Meets Computer Vision. International Journal of Computer Vision. In press 1–13
Brachmann, E and Rother, C (2018). Learning Less is More - 6D Camera Localization via 3D Surface Regression. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 4654–4662. http://arxiv.org/abs/1711.10228
Abu Alhaija, H, Mustikovela, S Karthik, Mescheder, L, Geiger, A and Rother, C (2018). Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes. International Journal of Computer Vision. 126 961–972. http://arxiv.org/abs/1708.01566
Schilling, H, Diebold, M, Rother, C and Jähne, B (2018). Trust your Model: Light Field Depth Estimation with Inline Occlusion Handling. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 4530–4538
(2018). A Supplementary Material Cereals-Cost-Effective Region-Based Active Learning For Semantic Segmentation
Haller, S, Swoboda, P and Savchynskyy, B (2018). Exact MAP-Inference by Confining Combinatorial Search With LP Relaxation. Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. AAAI Press. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16379PDF icon 2018-02-02_aaai_dense_combilp.pdf (325.08 KB)
Arnab, A, Zheng, S, Jayasumana, S, Romera-paredes, B, Kirillov, A, Savchynskyy, B, Rother, C, Kahl, F and Torr, P (2018). Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation. Cvpr. XX 1–15. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.8889&rep=rep1&type=pdf%0Ahttp://dx.doi.org/10.1109/CVPR.2012.6248050
Wolf, S, Pape, C, Bailoni, A, Rahaman, N, Kreshuk, A, Köthe, U and Hamprecht, F A (2018). The Mutex Watershed: Efficient, Parameter-Free Image Partitioning. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11208 LNCS 571–587. http://arxiv.org/abs/1904.12654
Hodaň, T, Michel, F, Brachmann, E, Kehl, W, Buch, A Glent, Kraft, D, Drost, B, Vidal, J, Ihrke, S, Zabulis, X, Sahin, C, Manhardt, F, Tombari, F, Kim, T Kyun, Matas, J and Rother, C (2018). BOP: Benchmark for 6D object pose estimation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11214 LNCS 19–35. http://arxiv.org/abs/1808.08319

2017

Kirillov, A, Levinkov, E, Andres, B, Savchynskyy, B and Rother, C (2017). InstanceCut: From edges to instances with MultiCut. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017-Janua 7322–7331

Pages