M. Heiler and Schnörr, C.,
“Natural Statistics for Natural Image Segmentation”, in
Proc. IEEE Int. Conf. Computer Vision (ICCV 2003), Nice, France, 2003, pp. 1259-1266.
B. Jähne, Jähne, B., and Haußecker, H.,
“Neighborhood operators”,
Computer Vision and Applications. A Guide for Students and Practitioners. Academic Press, p. 273--345, 2000.
B. Jähne, Jähne, B., and Haußecker, H.,
“Neighborhood operators”,
Handbook of Computer Vision and Applications. Volume II: Signal Processing and Pattern Recognition. Academic Press, p. 93--124, 1999.
B. Jähne,
“Neue Ansätze zur Bildfolgenanalyse”, in
Proc. 9. DAGM-Symposium zur Mustererkennung 1987, 1987, vol. 149, p. 287.
E. Brachmann and Rother, C.,
“Neural-guided RANSAC: Learning where to sample model hypotheses”, in
Proceedings of the IEEE International Conference on Computer Vision, 2019, vol. 2019-Octob, pp. 4321–4330.
PDF (8.02 MB) D. Singaraju, Rother, C., and Rhemann, C.,
“New appearance models for natural image matting”, in
2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009, 2009, vol. 2009 IEEE, pp. 659–666.
M. Zisler, Kappes, J. H., Schnörr, C., Petra, S., and Schnörr, C.,
“Non-Binary Discrete Tomography by Continuous Non-Convex Optimization”,
IEEE Comp. Imaging, vol. 2, pp. 335-347, 2016.
C. S. Garbe, Krajsek, K., Pavlov, P., Andres, B., Mühlich, M., Stuke, I., Mota, C., Böhme, M., Haker, M., Schuchert, T., Scharr, H., Aach, T., and Barth, E.,
“Nonlinear Analysis of Multi-Dimensional Signals”,
Mathematical Methods in Signal Processing and Digital Image Analysis. Springer, pp. 231-288, 2008.
Technical Report (7.11 MB) C. S. Garbe, Krajsek, K., Pavlov, P., Andres, B., Mühlich, M., Stuke, I., Mota, C., Böhme, M., Haker, M., Schucher, T., Scharr, H., Aach, T., and Barth, E.,
“Nonlinear analysis of multi-dimensional signals: local adaptive estimation of complex motion and orientation patterns”,
Mathematical Methods in Time Series Analysis and Digital Image Processing. Springer, pp. 231-288, 2008.