Publications

Export 94 results:
Author Title Type [ Year(Desc)]
Filters: First Letter Of Title is L  [Clear All Filters]
2010
M. Jehle, Sommer, C., and Jähne, B., Learning of optimal illumination for material classification, in Pattern Recognition, 2010, vol. 6376, p. 563--572.
M. Jehle, Sommer, C., and Jähne, B., Learning of Optimal Illumination for Material Classification, in Proceedings of the 32nd DAGM Symposium on Pattern Recognition, Darmstadt, Germany, 2010, pp. 563-572.
B. Ommer and Buhmann, J. M., Learning the Compositional Nature of Visual Object Categories for Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, p. 501--516, 2010.PDF icon Technical Report (2.78 MB)
J. Fehr, Local Rotation Invariant Patch Descriptors for 3D Vector Fields, Pattern Recognition, International Conference on, Istanbul, Turkey, August 23-26, 2010, pp. 1381-1384, 2010.
2012
B. Andres, Kappes, J. Hendrik, Beier, T., Köthe, U., and Hamprecht, F. A., The Lazy Flipper: Efficient Depth-limited Exhaustive Search in Discrete Graphical Models, in ECCV 2012, 2012.
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., The Lazy Flipper: Efficient Depth-Limited Exhaustive Search in Discrete Graphical Models, in Computer Vision - {ECCV} 2012 - 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part {VII}, 2012.PDF icon Technical Report (446.28 KB)
B. Andres, Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A., The Lazy Flipper: Efficient Depth-limited Exhaustive Search in Discrete Graphical Models, in ECCV 2012, 2012.PDF icon Technical Report (532.64 KB)
P. Yarlagadda, Eigenstetter, A., and Ommer, B., Learning Discriminative Chamfer Regularization, in BMVC, 2012, p. 1--11.
L. Fiaschi, Nair, R., Köthe, U., and Hamprecht, F. A., Learning to Count with Regression Forest and Structured Labels, ICPR 2012. Proceedings, pp. 2685-2688, 2012.PDF icon Technical Report (3.66 MB)
X. Lou and Hamprecht, F. A., Learning to Segment Dense Cell Nuclei with Shape Prior, CVPR 2012. Proceedings, pp. 1012-1018, 2012.PDF icon Technical Report (2.66 MB)
C. Sommer, Fiaschi, L., Hamprecht, F. A., and Gerlich, D., Learning-based Mitotic Cell Detection in Histopathological Images, ICPR 2012. Proceedings, pp. 2306-2309, 2012.PDF icon Technical Report (1.96 MB)
J. Jancsary, Nowozin, S., and Rother, C., Loss-specific training of non-parametric image restoration models: A new state of the art, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, vol. 7578 LNCS, pp. 112–125.
J. Jancsary, Nowozin, S., and Rother, C., Loss-specific training of non-parametric image restoration models: A new state of the art, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, vol. 7578 LNCS, pp. 112–125.
2013
K. E. Krall, Laboratory Investigations of Air-Sea Gas Transfer under a Wide Range of Water Surface Conditions, vol. Dissertation. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ.\ Heidelberg, 2013.
R. Walecki, Large-Scale Automatic Reconstruction of Myelianated Axons and Detection of the Nodes of Ranvier, University of Heidelberg, 2013.
L. Fiaschi, Learning Based Biological Image Analysis. University of Heidelberg, 2013.
J. Jancsary, Nowozin, S., and Rother, C., Learning convex QP relaxations for structured prediction, in 30th International Conference on Machine Learning, ICML 2013, 2013, pp. 1952–1960.
F. Diego and Hamprecht, F. A., Learning Multi-Level Sparse Representation, in NIPS. Proceedings, 2013.PDF icon Technical Report (2.79 MB)
F. Diego and Hamprecht, F. A., Learning Multi-Level Sparse Representation for Identifying Neuronal Activity, in Signal Processing with Adaptive Sparse Structured Representations Workshop (SPARS). Book of Abstracts., 2013.PDF icon Technical Report (1.05 MB)
T. Kröger, Mikula, S., Denk, W., Köthe, U., and Hamprecht, F. A., Learning to Segment Neurons with Non-local Quality Measures, in MICCAI 2013. Proceedings, part II, 2013, vol. 8150, pp. 419-427.PDF icon Technical Report (2.87 MB)
B. Antic, Milbich, T., and Ommer, B., Less is More: Video Trimming for Action Recognition, in Proceedings of the IEEE International Conference on Computer Vision, Workshop on Understanding Human Activities: Context and Interaction, 2013, p. 515--521.PDF icon Technical Report (984.89 KB)
2015
A. Krull, Brachmann, E., Michel, F., Yang, M. Ying, Gumhold, S., and Rother, C., Learning analysis-by-synthesis for 6d pose estimation in RGB-D images, in Proceedings of the IEEE International Conference on Computer Vision, 2015, vol. 2015 Inter, pp. 954–962.
J. Funke, Hamprecht, F. A., and Zhang, C., Learning to Segment: Training Hierarchical Segmentation under a Topological Loss, in MICCAI. Proceedings, Part III, 2015, vol. 9351, pp. 268-275.PDF icon Technical Report (2.92 MB)
B. Krolla, Diebold, M., and Stricker, D., Light Field from Smartphone-Based Dual Video, in Computer Vision - ECCV 2014 Workshops: Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part II, Cham: Springer International Publishing, 2015, pp. 600–610.
M. Diebold, Blum, O., Gutsche, M., Wanner, S., Garbe, C., Baker, H., and Jähne, B., Light-field camera design for high-accuracy depth estimation, in Videometrics, Range Imaging, and Applications XIII, 2015.
M. Diebold, Blum, O., Gutsche, M., Wanner, S., Garbe, C. S., Baker, H., and Jähne, B., Light-field camera design for high-accuracy depth estimation, Videometrics, Range Imaging, and Applications XIII. 2015.

Pages