Journal Article
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C.,
“A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems”,
CoRR, vol. abs/1404.0533, 2014.
Technical Report (3.32 MB) J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C.,
“A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems”,
International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C.,
“A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems”,
International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
J. H. Kappes, Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C.,
“A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems”,
International Journal of Computer Vision, vol. 115, pp. 155–184, 2015.
D. Cremers, Tischhäuser, F., Weickert, J., and Schnörr, C.,
“Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford–Shah functional”,
Int. J. Computer Vision, vol. 50, pp. 295–313, 2002.
J. Lellmann, Lellmann, B., Widmann, F., and Schnörr, C.,
“Discrete and Continuous Models for Partitioning Problems”,
Int.~J.~Comp.~Visionz, vol. 104, pp. 241-269, 2013.
Technical Report (4.74 MB) B. Savchynskyy, Schmidt, S., Kappes, J. H., and Schnörr, C.,
“Efficient MRF Energy Minimization via Adaptive Diminishing Smoothing”,
UAI. Proceedings, pp. 746-755, 2012.
A. Bruhn, Jakob, T., Fischer, M., Weickert, J., Brüning, U., and Schnörr, C.,
“High performance cluster computing with 3-D nonlinear diffusion filters”,
Real-Time Imaging, vol. 10, pp. 41–51, 2004.
J. Gall, Potthoff, J., Schnörr, C., Rosenhahn, B., and Seidel, H. - P.,
“Interacting and Annealing Particle Filters: Mathematics and a Recipe for Applications”,
J.~Math.~Imag.~Vision, vol. 28, p. 1--18, 2007.
Technical Report (1.11 MB) J. Gall, Potthoff, J., Schnörr, C., Rosenhahn, B., and Seidel, H. - P.,
“Interacting and Annealing Particle Filters: Mathematics and a Recipe for Applications”,
J. Math. Imag. Vision, vol. 28, pp. 1–18, 2007.
M. Welk, Weickert, J., Becker, F., Schnörr, C., Feddern, C., and Burgeth, B.,
“Median and related local filters for tensor-valued images”,
Signal Processing, vol. 87, pp. 291-308, 2007.
Technical Report (1007.29 KB) J. Hendrik Kappes, Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C.,
“Multicuts and Perturb & MAP for Probabilistic Graph Clustering”,
Journal of Mathematical Imaging and Vision, vol. 56, pp. 221–237, 2016.
A. Bruhn, Weickert, J., Kohlberger, T., and Schnörr, C.,
“A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods”,
Int.~J.~Computer Vision, vol. 70, pp. 257-277, 2006.
Technical Report (447.65 KB) A. Bruhn, Weickert, J., Kohlberger, T., and Schnörr, C.,
“A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods”,
Int. J. Computer Vision, vol. 70, pp. 257-277, 2006.
M. Zisler, Kappes, J. H., Schnörr, C., Petra, S., and Schnörr, C.,
“Non-Binary Discrete Tomography by Continuous Non-Convex Optimization”,
IEEE Comp. Imaging, vol. 2, pp. 335-347, 2016.