Publications

Export 223 results:
Author Title [ Type(Desc)] Year
Filters: Author is Christoph Schnörr  [Clear All Filters]
Journal Article
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2014). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. CoRR. abs/1404.0533. http://hci.iwr.uni-heidelberg.de/opengm2/PDF icon Technical Report (3.32 MB)
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184. http://hci.iwr.uni-heidelberg.de/opengm2/
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184
Kappes, J H, Andres, B, Hamprecht, F A, Schnörr, C, Nowozin, S, Batra, D, Kim, S, Kausler, B X, Kröger, T, Lellmann, J, Komodakis, N, Savchynskyy, B and Rother, C (2015). A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems. International Journal of Computer Vision. 115 155–184
Rathke, F and Schnörr, C (2015). A Computational Approach to Log-Concave Density Estimation. An. St. Univ. Ovidius Constanta. 23 151-166PDF icon Technical Report (1.07 MB)
Rathke, F and Schnörr, C (2015). A Computational Approach to Log-Concave Density Estimation. An. St. Univ. Ovidius Constanta. 23 151-166
Lellmann, J and Schnörr, C (2011). Continuous Multiclass Labeling Approaches and Algorithms. SIAM J.~Imag.~Sci. 4 1049-1096PDF icon Technical Report (4.31 MB)
Yuan, J, Schnörr, C and Steidl, G (2009). Convex Hodge Decomposition and Regularization of Image Flows. J.~Math.~Imag.~Vision. 33 169-177PDF icon Technical Report (1003.75 KB)
Swoboda, P and Schnörr, C (2013). Convex Variational Image Restoration with Histogram Priors. SIAM J.~Imag.~Sci. 6 1719-1735PDF icon Technical Report (553.54 KB)
Petra, S, Schnörr, C and Schröder, A (2013). Critical Parameter Values and Reconstruction Propertiesof Discrete Tomography: Application to Experimental FluidDynamics. Fundamenta Informaticae. 125 285--312PDF icon Technical Report (1.42 MB)
Cremers, D, Tischhäuser, F, Weickert, J and Schnörr, C (2002). Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford–Shah functional. Int. J. Computer Vision. 50 295–313
Lellmann, J, Lellmann, B, Widmann, F and Schnörr, C (2013). Discrete and Continuous Models for Partitioning Problems. Int.~J.~Comp.~Visionz. 104 241-269PDF icon Technical Report (4.74 MB)
Yuan, J, Schnörr, C and Mémin, E (2007). Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation. J.~Math.~Imag.~Vision. 28 67-80PDF icon Technical Report (752.44 KB)
Rohr, K and Schnörr, C (1993). An Efficient Approach to the Identification of Characteristic Intensity Variations. 11 273–277
Savchynskyy, B, Schmidt, S, Kappes, J H and Schnörr, C (2012). Efficient MRF Energy Minimization via Adaptive Diminishing Smoothing. UAI. Proceedings. 746-755
Schellewald, C, Roth, S and Schnörr, C (2007). Evaluation of a convex relaxation to a quadratic assignment matching approach for relational object views. Image Vision Comp. 25 1301--1314PDF icon Technical Report (439.9 KB)
Nicola, A, Petra, S, Popa, C and Schnörr, C (2011). A general extending and constraining procedure for linear iterative methods. Int.~J.~Comp.~Math. http://dx.doi.org/10.1080/00207160.2011.634002PDF icon Technical Report (633.79 KB)
Schmitzer, B and Schnörr, C (2015). Globally Optimal Joint Image Segmentation and Shape Matching based on Wasserstein Modes. J.~Math.~Imag.~Vision. 52 436--458. http://link.springer.com/article/10.1007/s10851-014-0546-8PDF icon Technical Report (1.97 MB)
Bruhn, A, Jakob, T, Fischer, M, Weickert, J, Brüning, U and Schnörr, C (2004). High performance cluster computing with 3-D nonlinear diffusion filters. Real-Time Imaging. 10 41–51
Gall, J, Potthoff, J, Schnörr, C, Rosenhahn, B and Seidel, H - P (2007). Interacting and Annealing Particle Filters: Mathematics and a Recipe for Applications. J.~Math.~Imag.~Vision. 28 1--18PDF icon Technical Report (1.11 MB)
Gall, J, Potthoff, J, Schnörr, C, Rosenhahn, B and Seidel, H - P (2007). Interacting and Annealing Particle Filters: Mathematics and a Recipe for Applications. J. Math. Imag. Vision. 28 1–18
Bruhn, A, Weickert, J and Schnörr, C (2005). Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods. 61 211-231
Welk, M, Weickert, J, Becker, F, Schnörr, C, Feddern, C and Burgeth, B (2007). Median and related local filters for tensor-valued images. Signal Processing. 87 291-308PDF icon Technical Report (1007.29 KB)
Breitenreicher, D and Schnörr, C (2011). Model-Based Multiple Rigid Object Detection and Registration in Unstructured Range Data. Int.~J.~Comp.~Vision. 92 32--52. http://www.springerlink.com/content/v266873267180602/PDF icon Technical Report (4.3 MB)
Breitenreicher, D and Schnörr, C (2011). Model-Based Multiple Rigid Object Detection and Registration in Unstructured Range Data. Int. J. Comp. Vision. 92 32–52. http://www.springerlink.com/content/v266873267180602/
Schmitzer, B and Schnörr, C (2013). Modelling convex shape priors and matching based on the Gromov-Wasserstein distance. Journal of Mathematical Imaging and Vision. 46 143-159PDF icon Technical Report (957.78 KB)
Schmitzer, B and Schnörr, C (2013). Modelling convex shape priors and matching based on the Gromov-Wasserstein distance. Journal of Mathematical Imaging and Vision. 46 143-159
Kappes, J Hendrik, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2016). Multicuts and Perturb & MAP for Probabilistic Graph Clustering. Journal of Mathematical Imaging and Vision. 56 221–237. http://arxiv.org/abs/1601.02088
Bruhn, A, Weickert, J, Kohlberger, T and Schnörr, C (2006). A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods. Int.~J.~Computer Vision. 70 257-277PDF icon Technical Report (447.65 KB)
Bruhn, A, Weickert, J, Kohlberger, T and Schnörr, C (2006). A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods. Int. J. Computer Vision. 70 257-277
Cremers, D, Sochen, N and Schnörr, C (2006). Multiphase Dynamic Labeling for Variational Recognition-Driven Image Segmentation. ijcv. 66 67-81
Zisler, M, Kappes, J H, Schnörr, C, Petra, S and Schnörr, C (2016). Non-Binary Discrete Tomography by Continuous Non-Convex Optimization. IEEE Comp. Imaging. 2 335-347
Ruhnau, P and Schnörr, C (2007). Optical Stokes Flow Estimation: An Imaging-Based Control Approach. Exp.~in Fluids. 42 61--78PDF icon Technical Report (1.54 MB)
Lellmann, J, Lenzen, F and Schnörr, C (2013). Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. Journal of Mathematical Imaging and Vision. 47 (3) 239-257
Lellmann, J, Lenzen, F and Schnörr, C (2012). Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem. Journal of Mathematical Imaging and Vision. Springer. 47 239-257PDF icon Technical Report (616.16 KB)

Pages