S
B. Savchynskyy, Schmidt, S., Kappes, J. H., and Schnörr, C.,
“Efficient MRF Energy Minimization via Adaptive Diminishing Smoothing”,
UAI. Proceedings, pp. 746-755, 2012.
N. Sayed, Brattoli, B., and Ommer, B.,
“Cross and Learn: Cross-Modal Self-Supervision”, in
German Conference on Pattern Recognition (GCPR) (Oral), Stuttgart, Germany, 2018.
Article (891.47 KB)
Oral slides (9.17 MB) H. Schäfer, Lenzen, F., and Garbe, C. S.,
“Depth and Intensity Based Edge Detection in Time-of-Flight Images”, in
3D Imaging, Modeling, Processing, Visualization and Transmission
(3DIMPVT), 2013 International Conference on, 2013, pp. 111-118.
H. Schäfer, Lenzen, F., Meister, S., and Garbe, C. S.,
“Edge Detection in Time-of-Flight Images”, in
submitted to ECCV, 2nd Workshop on Consumer Depth Cameras for Computer
Vision, 2012.
H. Scharr,
“Optimale Operatoren in der Digitalen Bildverarbeitung”. IWR, Fakultät für Physik und Astronomie, Univ.\ Heidelberg, 2000.
H. Scharr,
“Optimal separable interpolation of color images with bayer array format”, DFG research unit Image Sequence Analysis to Investigate Dynamic Processes, Interdisciplinary Center for Scientific Computing, University of Heidelberg, Germany, 2000.
H. Scharr, Jähne, B., Böckle, S., Kazenwadel, J., Kunzelmann, T., Schulz, C., and Krüger, N.,
“Flame front analysis in turbulent combustion”, in
Mustererkennung 2000, 2000, p. 325--332.
H. Scharr, Körkel, S., and Jähne, B.,
“Numerische Isotropieoptimierung von FIR-Filtern mittels Querglättung”, in
Proceedings of the 19th DAGM Symposium on Pattern Recognition, Braunschweig, 1997, p. 199--208.
H. Scharr and Küsters, R.,
“A linear model for simultaneous estimation of 3D motion and depth”, in
Proceedins of IEEE Workshop on Motion and Video Computing 2002, Orlando, 2002.
H. Scharr and Weickert, J.,
“An anisotropic diffusion algorithm with optimized rotation invariance”, in
Proceedings of the 22th DAGM Symposium on Pattern Recognition, 2000, p. 460--467.
M. Schaum,
“Subpixelgenaue Positionsbestimmungen in digitalen Bildern”, Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ.\ Heidelberg, 1993.
C. Schellewald, Keuchel, J., and Schnörr, C.,
“Image labeling and grouping by minimizing linear functionals over cones”, in
Proc. Third Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR'01), INRIA, Sophia Antipolis, France, 2001, vol. 2134, pp. 267–282.
C. Schellewald, Roth, S., and Schnörr, C.,
“Evaluation of Convex Optimization Techniques for the Weighted Graph–Matching Problem in Computer Vision”, in
Mustererkennung 2001, Munich, Germany, 2001, vol. 2191, pp. 361–368.
C. Schellewald, Roth, S., and Schnörr, C.,
“Performance Evaluation of a Convex Relaxation Approach to the Quadratic Assignment of Relational Object Views”, Dept. Math. and Comp. Science, University of Mannheim, Germany, 02/2002, 2002.
C. Schellewald and Schnörr, C.,
“Probabilistic Subgraph Matching Based on Convex Relaxation”, in
Proc. Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR'05), 2005, vol. 3757, pp. 171-186.
C. Schellewald and Schnörr, C.,
“Subgraph Matching with Semidefinite Programming”, in
Proc. Int. Workshop on Combinatorial Image Analysis (IWCIA'03), Palermo, Italy, 2003.
K. Schelten, Nowozin, S., Jancsary, J., Rother, C., and Roth, S.,
“Interleaved regression tree field cascades for blind image deconvolution”, in
Proceedings - 2015 IEEE Winter Conference on Applications of Computer Vision, WACV 2015, 2015, pp. 494–501.
T. Scheuermann, Pfundt, G., Eyerer, P., and Jähne, B.,
“Oberflächenkonturvermessung mikroskopischer Objekte durch Projektion statistischer Rauschmuster”, in
Proc. 17. DAGM-Symposium Mustererkennung, Bielefeld, 13.-15. September 1995, 1995, p. 319--326.
M. Schiegg, Hanslovsky, P., Haubold, C., Köthe, U., Hufnagel, L., and Hamprecht, F. A.,
“Graphical Model for Joint Segmentation and Tracking of Multiple Dividing Cell”,
Bioinformatics, vol. 31, no. 6, pp. 948-956, 2015.
Technical Report (534.29 KB)